WEIGHTS AND MEASURES

BY

SIR FLINDERS PETRIE

Original from
UNIVERSITY OF MICHIGAN

ANCIENT WEIGHTS AND MEASURES

ILLUSTRATED BY THE EGYPTIAN COLLECTION IN UNIVERSITY COLLEGE, LONDON

LONDON
DEPARTMENT OF EGYPTOLOGY UNIVERSITY COLLEGE, GOWER STREET

1926

CONTENTS

SECT. INTRODUCTION	Page	CHAPTER V	
I. Amount of material	I	sect. the Stater OR "ATtic"	Page
2. Union with previous publication	1	28. Description	12
3. Means of classification	1	29. Delimitation	12
4. Position of previous writers	2	30. History	13
5. Marks upon weights	2		
6. Generic names not specific	3	CHAPTER VI	
7. Stone weights treated alone	3	CHAPTER VI	
8. Mode of weighing	3	THE QEDET OR "EGYPTIAN"	
9. Stages of study	4	31. Description	13
		32. History .	14
CHAPTER I		33. Notes on the weights	
THE FORMS OF WEIGHTS			
10. Cylinder and cone	4	THE NECEF	
11. Square	5		
12. Cuboid	5	34. Description	
13. Domed	5	35. Delimitation	
14. Barrel and Duck	6	36. History .	
15. Animal	6	37. Notes on the weights.	
16. Summary	6		
		CHAPTER VIII	
CHAPTER II		THE KHOIRİNE OR "PERSIAN"	
MULTIPLES AND FRACTIONS		38. The kho weights	16
17. Usual multiples		39. The cowry weights	
18. Classifying fractions	7	40. Delimitation and History	17
18. Classifying fractions	7	41. Notes on the weights.	
CHAPTER III		CHAPTER IX	
19. System of the Catalogue	8	THE BEQA OR "AEGINETAN"	
THE PEYEM		42. Description	17
20. Description of sources	8	43. Delimitation	18
21. Delimitation	9	44. History	18
22. History	9	45. Notes.	19
23. Notes on the weights	10		
		CHAPTER X	
CHAPTER IV		THE SELA OR "PHOENICIAN"	
THE DARIC OR "BABYLONIAN"		46. Description	19
24. Description of sources	11	47. Delimitation	
25. Delimitation	11	48. History	
26. History	11	49. Notes	
27. Notes on the weights	12	50. Summary of primitive standards	20

CHAPTER XITHE WEIGHTS OF GEZER
SECT. PAGE
5 I. Standards in different periods
CHAPTER XIIthe metal weights
52. Apart from stone weights 22
53. Study of metal weights 22
54. Changes of metal weights 22
55. Peyem 23
56. Daric 23
57. Stater 23
58. Qedet 24
59. Necef 24
60. Khoirīnē 24
61. Beqa 24
62. Sela 24
63. Ungia 25
64. Sets of weights 26
65. Small metal weights 26
CHAPTER XIII
THE INDO-CHINESE-ETRUSCAN SYSTEM
66. Indian seed weights 27
67. Chinese weights 27
68. Etruscan weights 28
69. Possible connection 28
CHAPTER XIV
THE STEELYARDS
70. Origin and form 29
71. Divisions 29
72. Method of recovery of unit 30
73. Example of recovery 30
74. Units recovered $3 I$
75. Description of steelyards $3 I$
76. Arabic steelyards 32
CHAPTER XV
MEASURES OF CAPACITY
77. Nature of capacity measures 33
78. Treatment of the subject 33
79. The Syrian measure 34
SECT.
SECT. PAGE
80. The Egyptian hen 35
81. The Syrian log 35
82. The Attic kotyle 35
83. The Persian kapetis 35
84. Catalogue of capacity measures 36
85. Notes of condition of measures 37
86. Measures for gold dust 38
CHAPTER XVI
LINEAL MEASURES
87. Wooden cubits of 20.6 inches 38
88. Cubit of Tutonkhamen 39
89. Cubit of $21 \cdot 4$ 39
90. Cubit of 26.4 40
91. Stone standard of $26 \cdot 4$ 40
92. Pieces of stone cubits 40
93. Various standards marked on cubits 40
94. Connection of lineal and capacity measures 41
CHAPTER XVII THE BALANCES
95. Prehistoric 42
96. Roman 42
97. Later 43
CHAPTER XVIII
OTHER COLLECTIONS OF WEIGHTS
98. Naukratis, Defenneh and Cairo 43
99. Gezer and Troy 43
100. British Museum 44
CHAPTER XIX
THE DIALS AND DRAWINGS
101. Egyptian altitude dials 45
102. Greek azimuth dials 45
103. Drawings on squared papyrus 46
APPENDICES
Western standards 46
Notes from Italian museums 47
The cowry as a weight 49

LIST OF PLATES

PLATE PAGES
I. Historical development of weights, Peyem-Necef 9-15
II. Historical development of weights, Khoirīnē-Sela, metal 16-26
III. Forms of weights 1 -308 5
IV. Forms of weights 309-359 5
V. Forms of weights 360-483 4, 6
VI. Forms of weights $485-658$ 5, 6
VII. Forms of weights $660-827$ 5, 6
VIII. Forms of weights 830-980 4
IX. (Front) Weights of animal form 6
X. Inscriptions on weights 2017-3102, Peyem-Qedet 8-r 3
XI. Inscriptions on weights 3141-4466, Qedet-Beqa. 13-17
XII. Inscriptions on weights $4491-4799$, stone and metal 19-23
XIII. Inscriptions on weights 4806-5281, metal, Daric-Sela 23-25
XIV. Inscriptions on weights 5289-5339, Ungia 25
XV. Inscriptions on weights 5341 1-5651, Ungia 26
XVI. Box of weights and large examples 26, 42
XVII. Steelyard scales 29
XVIII. Larger Arabic steelyard 32
XIX. Smaller Arabic steelyard 32
XX. Egyptian hen measures 36, 37
XXI. Syrian measures of metal 36, 37
XXII. Syrian alabaster, log, kotyle, kapetis 36-38
XXIII. Glazed, pottery, wooden measures 36-38
XXIV. Fragments of stone cubits 40
XXV. Cubit marks, dial inscription, variation of units 41, 45
XXVI. Dials; engraved cubit 41, 45
XXVII. Register of stone weights 2001-2184, Peyem 8
XXVIII. Register of stone weights 2185-2357, Peyem, Daric 8-11
XXIX. Register of stone weights 2358-2532, Daric II, 12
XXX. Register of stone weights 2533-2687, Daric II, 12
XXXI. Register of stone weights 2688-2880, Stater 12, 13
XXXII. Register of stone weights 288i-3075, Stater 12, 13
XXXIII. Register of stone weights 3076-3265, Qedet 13-15
XXXIV. Register of stone weights 3266-3451, Qedet 13-15
XXXV. Register of stone weights 3452-3645, Qedet 13-15
XXXVI. Register of stone weights 3646-3826, Qedet 13-15
XXXVII. Register of stone weights 3827-3992, Qedet, Necef 15, 16
XXXVIII. Register of stone weights 3993-4140, Necef 15, 16
XXXIX. Register of stone weights $414 \mathrm{I}-4286$, Khoirinē 16, 17
XL. Register of stone weights 4287-4409, Beqa 17-19
XLI. Register of stone weights $4410-4555$, Beqa, Addenda 19
XLII. Register of stone weights 4555 A-4745, Sela 19-21
plate PAGES
XLIII. Register of metal and late weights 4746-4914, Peyem-Stater 23
XLIV. Register of metal and late weights 4915-5052, Stater, Qedet 24
XLV. Register of metal and late weights 5053-5204, Qedet-Beqa 24
XLVI. Register of metal and late weights 5205-5414, Sela, Ungia 24, 25
XLVII. Register of metal and late weights, Naukratis, Defenneh and Cairo 43
XLVIII. Register of metal and late weights, Naukratis, Defenneh and Cairo 43
XLIX. Register of metal and late weights, Gezer and Troy 21, 43
L. Register of weights. British Museum, Daric, Stater 44
LI. Register of weights, Stater-Beqa 44
LII. Register of weights, Ungia 45
LIII. Register of weights, Ungia-Sela 45
LIV. Drawings of shrine on squared papyrus 46

KEY TO STANDARDS OF WEIGHT

\begin{tabular}{|c|c|c|c|c|c|}
\hline Grains \& Original elements \& Ancient name \& Modern names \& Original elements \& \multirow[t]{4}{*}{$$
\begin{gathered}
\text { Gramme } \\
-\quad 7.38
\end{gathered}
$$}

\hline \& 116 \& \& \& $7 \cdot 52$ \&

\hline \& 121 \& PEYEM \& Euboic? \& 7.86 \&

\hline \& 124 \& \& \& 8.06 \&

\hline \multirow[t]{4}{*}{125.0} \& \& \& Babylonian \& \& \multirow{4}{*}{$8 \cdot 10$}

\hline \& 127.5 \& D \& Assyrian \& 8.26 \&

\hline \& 131.5 \& DARIC \& Euboic \& $8 \cdot 55$ \&

\hline \& \& \& Italic mina \& \&

\hline \multirow[t]{2}{*}{132.7} \& 134.0 \& S \& \multirow{2}{*}{Attic} \& 8.68 \& \multirow{2}{*}{8.60}

\hline \& 135.8 \& STATER \& \& 8.80 \&

\hline \multirow[t]{2}{*}{137.5} \& \& Q \& \& \& \multirow[t]{2}{*}{8.91}

\hline \& 144 \& QEDET \& Egyptian \& 9.33 \&

\hline \multirow[t]{3}{*}{152.4} \& \multirow[b]{3}{*}{$$
\begin{aligned}
& 154 \cdot 4 \\
& 162
\end{aligned}
$$} \& \multirow[b]{3}{*}{$$
\stackrel{N}{\text { NECEF }}
$$} \& Milesian \& \& \multirow[t]{3}{*}{9.87}

\hline \& \& \& Alexandrian \& 10.00 \&

\hline \& \& \& Syrian talent \& 10.50 \&

\hline \multirow[t]{2}{*}{168} \& 171 \& K \& \multirow[b]{2}{*}{Persian} \& 11.08 \& \multirow{2}{*}{10.89}

\hline \& 185 \& KHOIRİNE \& \& 12.00 \&

\hline \multirow[t]{2}{*}{188} \& 196 \& B \& Nub \& 12.70 \& \multirow[t]{2}{*}{12.18

3.61}

\hline \& 210 \& BEQA \& Aeginetan \& 13.61 \&

\hline \multirow[t]{5}{*}{210} \& \multirow{5}{*}{220} \& \multirow{5}{*}{\[
\stackrel{L}{SELA}

\]} \& \multirow[t]{5}{*}{| Phoenician |
| :--- |
| Maccabean |
| Ptolemaic |
| Alexandrian talent |
| Italic mina |} \& \multirow{5}{*}{14.26} \& \multirow{5}{*}{13.61}

\hline \& \& \& \& \&

\hline \& \& \& \& \&

\hline \& \& \& \& \&

\hline \& \& \& \& \&

\hline
\end{tabular}

WEIGHTS AND MEASURES.

INTRODUCTION

1. The subject of ancient weights and measures has been more neglected than other branches of archaeology. Only two or three dozen Egyptian weights had been published, when my excavations at Naukratis brought to light some five hundred. This former paucity was entirely due to neglect; it has been the same in most other excavations, whereas the work of the British School has added almost every year to the known material. Thus we have now at University College over four thousand weights, or about two thirds of all the Egyptian weights known; most of the remainder being those published in Naukratis and Tanis II and Defenneh, which were presented to American museums.
2. In view of the mass of material, it has seemed best to simplify future reference by incorporating in one series the scattered publications since those of Naukratis and Defenneh. Hence the numbering in those volumes is to be retained; while the shorter numbered lists published since, are here cancelled, and included in the single series of the present volume. The former series of type drawings of form are retained, as in Naukratis, except in two types which it was desirable to re-classify. The much larger variety of types now known has been incorporated (on the decimal system) by add-ing-for instance-types 33 I to 33 g between types 33 and 34. No additions have been made between the first ten types, in order to avoid confusion with subsequent numbers. Thus the present work forms a homogeneous whole with the earlier work of forty years ago. As much fresh information has accrued since that date, modifying the arrangement of the weights, there is here included a skeleton list of the latest attribution of all the earlier weights published in Naukratis, Defenneh, and the Cairo Catalogue. Thus nearly all the Egyptian material for study is at hand in this volume. The
whole subject of Arabic glass weights is deferred for a second volume, to follow the present one. 3. A revision of earlier studies was necessary, owing to the great advance made in recent years in Palestinian metrology. Four standards of weight have been found named on weights from Palestine (pl. xxiii), the Necef, the Peyem, the Beqa, and another with the monogram of XO , which I here render as the Khoirīne, on evidence stated further on. Of these four standards, two had been already recognized in Egypt, but without original names, and two are quite new to us, and serve to clear up the Egyptian metrology, so that no limbo of unclassified material now remains.
Thus, by the material now known, we are forced to recognize eight standards in use in Egypt, which we shall specify and discuss. Each has so much variation between the different examples, that they form a continuous overlapping series, which can best be stated as starting from the peyem, beginning at 114 grains, to the sela, or Phoenician unit, ending at the double of that, 228 grains. Between these limits there is no unassigned place in the scale, and the variations are such that the ranges of the eight standards slightly overlap. Such a situation might seem to reduce the subject to a mere arbitrary assignment of any object to some standard, and even raise the question whether there were any definite standards. The subject is, however, cleared so soon as we reach the lower multiples. Some standards were multiplied by 3 , others by 4 , others by 5 . Hence we find clear separations arising, such as, for instance, the result between 500 and 600 grains; there are only 14 weights altogether in this 100 grains of range, while, on the other hand, there are 15 weights of the single value of 287 grains, amid a multitude of others larger and smaller. Thus the different kinds of multiples serve to delimit the ranges of the standards, and so classify the weights.

The classification is also greatly helped by the different types of form which were favoured for different standards. Thus in the beqa (or Egyptian $n u b$) series there are 50 square weights and 40 duck forms, whereas in the stater (or Attic standard) there are only 10 square stone weights and 23 duck weights. Hence by searching for varieties of form, which may be much more usual in one standard than in another contiguous to it, and mapping out the examples in a diagram, it is soon found what the limit is of one standard apart from the other. Of course it must be remembered that there was no fixed division between different standards; each had its variations, and they usually overlapped. If we had the same amount of irregularity now in our weights, there would be an overlap between the high pound weights and the low half kilogramme weights. All we can do is, by examination of all the material, to fix the points which divide best between the standards, and further to separate those which overlap, as far as possible, by evidence of forms and materials. All this only refers to a small percentage of the whole weights, for not more than two or three per cent are so divergent as to interfere, but it is needful to state exactly how they are here dealt with.

In such discussion of treatment, we must always remember that we are only taking a fore-shortened view of many thousands of years of changes, and that most of the variations which we observe might be simplified into quite separate lines of descent, if we knew the historical variation. The usual position is like that of looking along a crowded street, and seeing only a solid barrier of traffic, instead of looking down upon it, and so tracing the crossing lines of each separate unit of the whole confusion. We shall endeavour here to use every indication of the historic changes; for, though far from complete, they are invaluable as disentangling our view of the subject.
4. No attempt will be made here to deal with the whole of the immense subject of ancient metrology. This is only a publication of material, and in the necessary classification of it we may reach some solid foundations for the whole subject. The mass of fragmentary literary information, and results from other countries, will only be touched on where needful for the Egyptian material. Above all, nothing will be based on, or modified by, theories of connected standards; we only deal here with the material facts. The whole subject
has been badly confused by the speculative metrologists, who have wasted much paper by theorizing. Boeckh, Soutzo, Aures, Hultsch, Leh-MANN-HAUPT and others have started theories which the vagueness of the subject would shelter, but which are quite incompatible with the historical facts in detail. Looking at the conditions of the ancient world, of a large number of communities each developing a strongly individual civilisation, the presumption is that there would be as many standards as there were languages. The vision of our reducing all to one original standard is as hopeless as the old idea of one primitive universal language.
5. Some writers have preferred to pay attention only to the small minority of marked weights, as giving a greater certainty of meaning, and have ignored the general mass of material. That is, however, unsafe as marks often show what a weight was not, instead of what it was. The meaning of this is that the marks are often secondary, being added to a weight of one standard in order to show what was its equivalent on another standard. There is a parallel to this in modern times, when the coins of one country are countermarked with a fractional value of another currency in order to pass in a different system. In other cases only the secondary value is marked, and is shown to be secondary by its not being a likely number, and by the weight being a simple number of some other and commoner standard. Thus

30 \quad, $\frac{1}{4}$ mina	$9=9$ double beqa (4302)
$\frac{1}{2}$ qedet	$n u b=\frac{1}{3}$ beqa (Cairo 3r6or)
1 deben	$6=6$ double peyem (Br .
1 n	$8=8$ khoirinē (3746)
5	$3=3$ o double peyem
10	$70=70$ beqa (4399)
	$6 \mathrm{o}=60$ double peyem (Br. Mus.)
$10 \mathrm{khoirīnē}$	$9=9$ beqa (4254)
10 light beqa	$9=9$ heavy beqa (4302,4542)
10 beqa	$8=8$ double daric (4416)
1o double beqa	$19=19$ heavy beqa (4417)
10 beqa	$30=30$ half qedets (314 r)
10 ,	$8=8$ double daric (Goleniche
100 n	$15=15$ deben (4491)
40 minas (sela)	$270=270$ deben (Cairo 31652)

In all these, the simplicity of the multiple on the commoner standards, and the irregularity of
the marked numbers on the rarer standards, shows clearly that the marking was secondary, as we might now mark 35 ounces on a kilogram weight.
In other instances, marks have been altered. There seems to have been a standard of $1 \frac{1}{2}$ of the nub or beqa; on one weight (4552) a 1 has been altered to III, that is reducing from $1 \frac{1}{2}$ to $\frac{1}{2}$ beqa as the unit; in another instance (4299), II has been altered to III, reducing from $1 \frac{1}{2}$ beqa to I beqa unit. On another weight (4455,4507) the value has been marked more correctly; 50 was originally on it, giving 208.66 grains for the beqa, and this has been altered to 5 I by a fresh stroke, giving 204.56 grains unit. From all these it is evident that any number marked, beyond the simplest likely multiples, really shows that the weight was not made for that amount, but that its value on a fresh system has been added upon it.
The marks, when simple numbers, and undoubtedly referring to the original purpose of the weight, are often on a basis of a multiple of the standard. Thus a 5 qedet weight is marked I (Cairo 31289), and a 20 qedet (3673) marked IIII, and a 10 qedet marked II; also a 10 qedet (3260) is marked IIII, and a 40 qedet (3343) marked $n \cap$ (20); these show units of 5 qedet and of 2 qedet. The same is known from literary sources, where 5 deben has a name, shed.
6. Another point to notice, respecting marks, is that generic marks, or names for a weight, must not be confounded with specific marks which distinguish a standard. There were many different standards named mina or shekel; so finding "mina" or "shekel" on a weight does not show to which standard it belongs. Similarly in Egypt deben, though usually accepted as $=10$ qedet, or between 1400-1500 grains, was also applied to other units. There is a weight (2046) of about 10 normal deben on which is clearly written "The 12 deben contained in the 2 weights of alabaster of Neferrenpet." Here the named deben is obviously about 1156 grains, or a name for the 10 peyem weight. Similarly, there is, in Cairo, a weight of " 300 deben" (no. 31651) the unit of which is 10 darics of 124.9 grains; the multiple of 300 proves this, as the daric was multiplied by 60 , while the Egyptian deben was decimal. Again, a weight (of Ampy) at Berlin marked 10 deben, gives a unit of 218.8 grains, the sela, or Phoenician standard. The circle or ring marked along with a numeral, on weights, has sometimes been supposed to mean one specific
unit; but it is found on weights of six out of the eight known standards, only omitting the khoirine and the stater (Attic); the meaning of it is therefore simply "unit."
7. It should be explained that the stone weights are treated here apart from the metal weights, as being the sole material for accurate discrimination. In most cases the stone weights have undergone no alteration; even when chipped, the original weight can be fairly closely inferred. But metal weights are nearly all so much attacked, that the alteration is serious; there has been gain by oxygen and carbonic acid, and loss by breaking away of the altered crust. A weight of metal which looks quite clear and smooth, may have had a large amount scaled off it, or have been cleaned in other ways. For the study of the units, only stone weights should be employed; the metal weights can then be attributed, after estimating the changes, and are of value for showing marks and types of form.
8. The choice of a modern standard to describe the ancient weights must be between the grain and the gramme. On the grain system there are thousands of weights already published, on the gramme system only a few hundreds at Cairo. The Continental scholars have devoted themselves to theorizing instead of collecting and publishing weights. It seemed best therefore not to break away from the great mass already in print, and split the subject by printing these fresh lists in grammes. To aid reference, I have here issued the Cairo weights reduced to grains, in the summary list, along with the weights of Naukratis and Defenneh. In the diagrams of weights here, the dividing lines by grammes are put above that by grains, so that the results can be read on either system.
The actual methods of weighing this collection were as follows. For all weights up to three pounds, a new commercial balance by Becker was used, which freely showed o.1 or 0.2 grain with a moderate load. A new set of grain weights were used, the errors of which were not larger. For all fractions of roo grains, a vertical slider was read; this held one end of a brass chain, and the other end hung from the balance pan. Thus any amount could be added or subtracted without the least agitation of the balance, the swing of the balance could be instantly checked by moving the slider, and a complete control quickly brought it to rest. By this means 70 weighings an hour could
be done to about 0.2 grain, and with 4000 weighings to be made, a speedy method was needful. The accuracy is amply sufficient for almost all the possible needs of the work.

For the heavier weights, up to about 30 lbs., a large mediaeval steelyard was rigged up, with the tip of the beam resting by a point in the balance pan; the leverage was about $1: 10$, and the amount of pressure was weighed in the pan like any other weight. The lever multiplier was ascertained frequently, by testing with a known weight. The knife edges rested on plate-glass planes bedded on plasticine to ensure a good contact bearing.

For a few very heavy weights up to 180 lbs., the weight was hung by a thin rope; a point at top and bottom of the rope was marked, and the distance measured; then the weight was pulled to one side by a horizontal spring balance, and the deflection and pull noted; several different readings were taken, and the weight calculated from them and averaged. This is sufficient to show what system the weight agreed with, and in no case could we depend on accuracy in such weights.
9. It need hardly be explained that the methods followed here, in classifying the weights, are those attained after many searches, and listing in many ways. A large amount of tentative tabulating had to be done, on various lines, before a conclusive method of handling each part of the material could be reached. The whole of the weights were first classified by form, and, under each form, according to the number of grains. The lists of these classes proved of great value for discriminating standards; but when once the useful differences are traced, the rest of such tabulation is needless to publish or keep. Similarly the actual weights, after classing by form, are all re-arranged according to the different standards, in the permanent order of the collection. In this volume all this scaffolding is removed, and might not be realised when looking only at the conclusions here stated. If any one wishes to revise the conclusions, they must go through the stages of classifying, and many trials of diagrams and curves, which have led to the present order; without such detailed study of the material, the situation cannot be grasped for any revision.
For the general state of our knowledge of ancient weights and measures, see the Encyclopaedia Britannica, 1890, art. Weights, and later materials
in Palestine Exploration Fund, Quarterly statement, 1912, and Transactions of the Victoria Institute, 17 May, 1915.

CHAPTER I
 THE FORMS OF WEIGHTS. Pls. III-VIII.

10. BEFORE considering the history of the various standards of weight, it is necessary to observe the different forms which were in use at the principal periods, as such serve to give the approximate age of the weights.

Cylinder and Dome, pl. v, 456, 458; viii, 88ı, 883. The earliest weights are the small blocks of limestone found in early prehistoric graves of the Amratian age. There is no sign of wear on these blocks, nor of any use of them as tools. There does not seem to be any possible purpose for these pieces except as weights. When they are compared together, they are all found to be within the range of the "gold" unit or Beqa, with simple multiples such as 40 , three of 20,15 and 6 . Though some of these are cylindrical, and others conical, they all have the curious feature of domed ends, so that they never can be set upright. The age of these is given by the grave groups in five instances; only one is without a history, for it was bought. The earliest fixed points are sequence dates 32 and 33 , or within the age of the white-line red pottery of the Amratian civilisation. The latest fixed point is S.D. 46, or in the earlier part of the Gerzean civilisation. Hence this form characterizes the Amratian period and hardly extends into the next age.

Cone, pl. viii, 913-915. This type begins with rounded cones of limestone paste, covered with black line patterns, of Gerzean age. Later, the cone was flat-based and pointed, as found in alabaster in the Semainian age just before the Ist dynasty. All of these cones were found singly or in pairs, but never in larger numbers, so do not appear to be gaming pieces. They agree in the Gerzean age to the Daric standard, and in the Semainian to the Qedet standard which was official in historic times. The conical form, roughly made, lasted to the xiith dynasty at Kahun. Cones with wide domed tops are figured in the xviiith dynasty, as in Qurneh, xxxv, and L. Denkm., III, 39: also in the xxvith dynasty tomb of Aba at Thebes (M.A.F., $\mathrm{V}, 656$, iv). There is no trace of cone weights from Naukratis or Defenneh.
11. Square. The next form to arise was the square block, somewhat oblong (vi, 65). This was found in a tomb of the beginning of the Ist dynasty (R.T., II, xxxii, 6r). Shortly after, there were many rudely squared weights, and ground slips of stone (Tombs of Courtiers, 9). This form was soon improved by rounding the edges to prevent chipping, until in the ivth dynasty-the age of mechanical perfection-the most suitable form was adopted (vi, 649, 653-654); this exhibits the greatest rounding of the edges compatible with leaving flat faces to prevent rolling. It is a form which is more perfect than that of any standards made since. It is dated by the weight of Khufu (Hilton Price catalogue), and the inscribed weight (vi, 656) of a nomarch Nefer-măot, no. 4740 , a ivth dynasty name. Rather less rounding is seen in the vith dynasty (Abydos, II, xv, 14), and less still in the jasper weight of Khety of the ixth dynasty (no. 4466, pl. xi). In a representation of weighing, in an Old Kingdom scene, the weights are shown as sharp-edged cubes. In the xiith dynasty, the square weights mostly have sharp edges, as at Kahun, though some were rounded. After that, the rounding of the square weight ceases.

Oblong. The oblong weight appears in the figures of weights painted in the tomb of Hesy, of the early part of the iiird dynasty. Presumably these had the slight cylindrical curve of the top (as in the weight of Khufu), which is so usual in the xiith dynasty. Such was the typical form of the gold standard, but seen here in the splendid weight of prince Herfu (vii, 694). The same continued into the x viiith dynasty, shown by the weight belonging to Amenhetep I (Brit. Mus.), and the figures in the weighing scene at Deir el-Bahri. After this it disappears; but a weight of Taharqa, here (pl. x, 2398) of oblong form, has a slightly domed top, curving in all directions. Nothing of the kind occurred at Naukratis or Defenneh, and it therefore did not continue in the Saite or later civilisations.

Pillow forms. A variety of the oblong form is the pillow type, with all the edges and faces rounded. Such is dated by my finding granite blocks of this form in the workmen's quarters at the pyramid of Khafra. Two examples of this form shown here (pl. vi, 658; nos. $4103,408 \mathrm{I}$) are of diorite, which clearly points to the age of the ivth dynasty. Some of the Kahun weights are roughly made of this type, and some with rounded edges, but almost
flat above and below. After the xiith dynasty the type disappears.
12. Black quartzose cube, cuboid, and rough forms. These forms (iii, 4-19) merge so indistinctly into each other that they must be taken together, though the finest are exquisite cubes with flat polished faces, and the roughest have scarcely any regular shape. All of the more regular are of black or dark grey rock, apparently a black hornblende base penetrated by white quartz veins, or a magma with more or less quartz. At first sight, the rough forms seemed as if they must be merely hammerstones, and several have been so used, but this is a common fate of even the best weights. The great amount of labour given to working down such a hard stone, usually with smooth, and often polished, faces, points to their being weights. The possible attributions of them confirm this; were they mere hammer-stones the irregular forms would be equally found of all varieties of handy size, but, after classifying them, they are found to group into particular standards. In the qedet, the necef and the stater they are rare, only 2 or 3 per cent. In the beqa, khoirine and daric they are $12-14$ per cent; in the peyem 21, and in the sela (or Phoenician) they are the commonest type of all, amounting to 27 per cent. These hard black weights are not found in the Old Kingdom or in the xiith dynasty at Kahun. Two of the xviiith dynasty from Gurob may well be of the later occupation. I have found them in the late town at Gizeh, overlying ruins of the xxith dynasty, and they are common at Naukratis and Defenneh. It seems, then, that they arose about the Bubastite age, and probably continued to near the Ptolemaic age.
13. Domed top, pl. iii, iv, 24-34. As early as the ivth dynasty, a circular weight with a domed top and fairly sharp edge is found, with the name Ra-ne-onkh deeply cut in the style of that age (no. 2152). It is a very imperfect example of the domed-top type, but it long precedes any others that are known. There is no dated example until we reach that of Onkh-nes-ra-nefer-ab (no. 2597) in the xxvith dynasty. The entire absence of the type, among the weights of the xiith and xviiith dynasties at Kahun and Gurob, and in all the paintings of the xviiith dynasty, makes it unlikely that it was used in those periods. The great multitude of weights of this form seem to belong, then, to the Saite age, and continued till Roman times (see Illahun, 33).

Domed, v, 37-40. Linked with the previous type, and passing into it, is the domed form, without the top being bounded by an edge. This seems to have arisen in forms contracting upward from the base, as early as the xiith dynasty (Kahun); but, in the more usual form, widening from the base upward, it appears rarely at Gurob, and perhaps only late there. It becomes extremely common, along with the dome topped type, in the Saite age; one example bears the name of Atha, son of Hor-uza (no. 2882), others in Cairo have inscriptions of Taharqa (31652) and Nekau (31604).
14. Barrel, vi, 485-53. The barrel or spindle form, flattened on one side, is probably Syrian in origin, along with the duck form. The earliest example is a small malachite weight found in the tomb of Zer, of the Ist dynasty (R.T., II, xxxv, 78). None have been found of the xiith dynasty, and it is not till we reach the great age of intercourse with Syria, in the xviiith dynasty, that this form is common in Egypt. Seven weights were of this type out of 32 found at Gurob, a large proportion. In the ruins of the temple of Merenptah at Memphis, $x x$ th-xxvth dynasties, there are 6 in 56, or in per cent. Yet when we reach the Saite äge, at Naukratis and Defenneh, out of 1270 weights only 4 barrel forms of stone occur, though there are some small bronze barrel weights for goldsmith's use. In place of 22 per cent of barrel forms in the xviiith dynasty, or in per cent after that, there is only $\frac{1}{3}$ per cent in the xxvith dyn-asty-they are practically extinct. Hence all the stone barrel weights in Egypt should probably be assigned to the xviiith-xxiiird dynasties.

Duck, vii, 77-80. In Babylonia and Assyria, the duck form of weight is a well-known type, but it is not found in Egypt till the xviiith dynasty. It is seldom that the head of the duck is retained in Egyptian examples; one or two here show it slightly, and the only clearly marked neck, head, and eye, is on a fine specimen in haematite from Sparta. In general, the Egyptian form is more like an egg with a pointed end, flattened below to prevent rolling. In the best examples the small end is raised clear of the base, in the worst the flat base is the widest part of the mass. In the ruins of the Merenptah temple, xx th- xxv th dynasties, there are 4 duck weights in 56 , or 7 per cent. On reaching the Saite age there is, of all varieties of the duck type together, less than i per cent. Many of these are of poor and degraded forms. On comparing
this with the proportion in series where the duck was a regular type, there is 6 per cent in the stater (Attic) and 8 per cent in the khoirinē. So it is clear that, in spite of Defenneh being on the Syrian road, the duck type was nearly extinct there in the xxvith dynasty.
15. Animal types. Front. Apart from the Babylonian duck type, there are many animal types apparently of Egyptian origin. Of these we mainly learn from the painted scenes of weighing. There is no trace of such forms in the earlier times, either actual specimens or in paintings. At the beginning of the xviiith dynasty, an ox weight is figured at El Kab (L. Denkm., III, ro). Under Hatshepsut, there are the ox and ox-head forms at Deir el Bahri. Under Tehutmes III, the calf and ox-head (L. Denkm., III, 39). A little later a lion weight, and an ox-head weight (Mém. Miss. Franç., V, 210, 569 ii). At Qurneh, about this age, there occur a hippopotamus, an ox, and an ox-head (Qurneh, xxxv). From Tell Amarna, under Akhenaten, there is an ox-head of bronze weighted with lead (no. 4939 here); and about the same age one from Gurob (no. 5030). In Cairo is the large stone oxhead with the name of Sety I. Coming to the xxvith dynasty, the tomb of Aba at Thebes shows a gazelle weight (Rosel., Civile, li; Cailliaud, 17). This last may be only taken from an earlier scene, as the whole tomb is an archaistic copy, mainly from the tomb of an earlier Aba at Sheykh Sayd. Hence we can only be certain of evidence for animal weights in the xviiith and xixth dynasties. Apart from those due to Greek influence, as some are here, we should assign all Egyptian animal weights to the period of the New Kingdom.
16. Setting aside, then, weights of vague and ill-defined types, we may now sum up the usual ages of the definite types. These periods are not entirely exclusive, as there may be a small proportion beyond the ages given, but they may be taken as serving to date weights in general, if no more precise evidence is at hand.

		Types in plates
Cylinders and cones, domed base	Amratian, prehist.	$\begin{aligned} & 456,88, \\ & 913-914 \end{aligned}$
Pointed cones	Semainian, prehist.	915-917
Round-top cones	xviiith dynasty	921-927
Square, sharp edges	Ist	62-64
Square, edges greatly rounded	ivth	656

Square, edges less rounded		Types in plates
	ixth	653-654
Square, edgesslightly rounded	xiith	
Oblong, cylindric top	iiird? xiith-early xviiith dyn.	691-694
Pillow	ivth-xiith dyn.	658
Black quartzose cube, \&c.	xxiind?-xxxth d.	$\begin{gathered} 144-185, \\ 55,57 \end{gathered}$
Domed top	(ivth) xxvith dyn.Roman	24-36
Domed	xxvith-xxxth dyn.	37-45
Barrel	xviiith-xxiiird	48-53
Duck	xviiith-xxiiird	77-81
Animal	xviiith-xix th	Front.

(The weights marked Merenp, from over the ruins of the Merenptah temple, Memphis, are placed to the xxiiird dynasty.)

CHAPTER II
 MULTIPLES AND FRACTIONS.

17. The general principles of the assignment of multiple and fractional weights to different standards should be noticed. Each standard had its regular system, as we have a system of 16 drams = I ounce, and 16 ounces $=1$ pound. Occasionally a different fraction or multiple may occur for convenience of approximation to another system, as we had at one time postal weights of $\frac{1}{3}$ ounce as an equivalent for 10 grammes, and France now has a unit of 15 grammes as equivalent to our $\frac{1}{2}$ ounce. In general we should not accept any multiple which is unlikely, such as $11,13,23,28$, 33, 46, which all appear as supposed multiples in a recent paper on weights; nor any multiple which is out of the usual system of the standard, as 16 in the Assyrian sexagesimal system, or 6 in the peyem system which is decimal and binary. For purposes of classifying weights, the table on pl. xxv is the most ready way of seeing to what standard or standards any weight should be assigned. Some amounts are ambiguous, as for instance 600 grains may be either 5 peyems or 4 darics; or 800 grains may be either 5 necefs or 4 beqas. In such cases the only course is to place the uncertain weights together, compare the forms and materials with the certain ones of each standard in
question, and then assign each weight its probable place. Thus the really uncertain material is seen to be only a minute amount of the whole. In order not to prejudice the question, any weight which might be supposed to belong to either of two systems, is entered here under each, the detail being given in the most likely position, and a bare mention of the weight in the less likely list, with the initial of the standard where it is fully stated.
18. The treatment of fractional weights is somewhat different. There is not the same range, as $\frac{1}{6}$ is the smallest fraction usually found, so that only five fractions need be considered, and the $\frac{1}{2}$ is usually obvious. The fractions of different standards are not well fixed, except the daric, the stater, and the sela. The method here followed, for separation of the small weights, was as follows. In order to separate at 23.5 to 26.5 grs . between $\frac{1}{8} \mathrm{~B}$. and $\frac{1}{5}$ P., $\frac{1}{5}$ P. would not extend over 25.0 ; if it existed side by side with $\frac{1}{8} B$. then there should be more weights from 23.5 to 25.0 where they overlap, than from 25.0 to 26.5 which can only be $\frac{1}{8} \mathrm{~B}$. Yet the numbers are equal in those two ranges, therefore there are no $\frac{1}{5}$ P., but only $\frac{1}{8}$ B. B. is proved to divide in $\frac{1}{8}$ th by the uniform series of haematite conic weights of 200,50 and 25 grains. The sela we know to be divided into 4 drachms of 56 grains, and that in $\frac{1}{8}$ th; hence $34-38$ grains cannot be $\frac{1}{6} \mathrm{~L}$. and must therefore be $\frac{1}{5} \mathrm{~K}$.: and $26-28.5$ grains is $\frac{1}{8} \mathrm{~L}$. As K. divides by 5 , then $28-3 \mathrm{I}$ grains cannot be $\frac{1}{6} \mathrm{~K}$., but must be $\frac{1}{4} \mathrm{P}$. As P. divides by 4, then $38 \cdot 5-40.5$ cannot be $\frac{1}{3} \mathrm{P}$., but must be $\frac{1}{4} \mathrm{~N}$. This covers all the scale, and the results are:-

peyem	114-125	\div	4	28.5-31.2	grains
daric	125-132.5	\div	6	20.8-22.1	n
stater	132.5-137.5	\div	6	22.1-22.9	n
qedet	137.5-152.4	\div	5	27.6-30.5	n
		\div	3	45.8-50.8	"
necef	152.4-170	\div	4	38.1-42.5	n
khoirine	170-190	\div	5	34.0-38.0	"
beqa	190-211	\div	4	47.5-52.7	n
sela	211-228	\div	4	52.7-57.0	n

Here it will be seen that there is an overlap of $\frac{1}{4} \mathrm{~B} .=47 \cdot 5-52 \cdot 7$, and $\frac{1}{3} Q .=45 \cdot 8-50.8$. Now no $\frac{1}{3}$ Q. weight could exceed 51 which is $=204$ on the beqa system; and the larger beqa weights, under 204 and over 204, are in the proportion of $4: 3$. As there are 14 small beqa weights over the limit, there should be by proportion 18 under the limit, within the Q. region (3:4:: $14: 18$). Hence
we have to weed out 18 small weights as beqa from the mixture of qedet and beqa of $45.8-50.8$ grains. On examination, it was found that there were just 18 of these of the conical dome form common for the beqa, having the rest of the domedtop form characteristic of the qedet. There is therefore little or no uncertainty in discriminating the two standards in the small weights.

CHAPTER III
 System of the Catalogue.
 Pls. XXVII-XLII.

19. Before describing the Peyem and other standards, the arrangement of the tabular catalogue, at the end of the volume, should be noted.

The weights are classed according to the eight different standards. The order is according to the amount shown for the unit, from light to heavy. Where examples agree in the unit to a tenth of a grain, they are classed in the order of the multiple of the unit.

Column of number. As the long lists of weights of Naukratis and Defenneh are quite independent of the weights here, they continue to stand as a permanent record, numbered from I to 1292 (Naukratis, I, 75-79; Nebesheh and Defenneh, 82-88, in Tanis, II). The short lists subsequently published from other places are cancelled, as the examples all appear in this larger catalogue. The numbers here begin with 2001, to avoid clashing with the above lists. In the list of qedet weights, d, means a duplicate, which has been removed from the College collection and is not numbered. In all the columns, repetitions of current numbers and words are left blank, as the more open arrangement of figures is easier for reference.

Material. The obvious nature of the stone is named, rather than a purely geological definition, which would be less clear to archaeologists. Where more than one word is required, abbreviations are used. Bk., black; Br., brown; Gn., green; Gy., grey; Y., yellow. B. or Bas., brown basalt, the commonest material for weights; Bl. gl., blue glaze; Gls., glass; Glzd., glazed; Gy. volc. ash, grey volcanic ash; Gran., granite; Limest., limestone; Mem. glass, Memphite glaze factory; Porph., porphyry; Qtz., quartz; Qtzite., quartzite, silicified sandstone; Qtzose., quartzose, hard silicates with quartz veins; Steat., steatite.

Form. Numbers refer to the plates of types, pls. iii to viii.

Grains. This is the present weight, when undamaged; if damaged the amount of loss estimated is added, so as to restore the original weight. The amount of loss estimated is stated as - n in the last column.
X. This is the multiple of the unit in the weight. For heavy weights it is the multiple of the superunit, such as D., deben; M., mina; T., talent.

Unit. This overlaps a little from one standard to another; the discrimination between the standards is detailed under delimitation in the following accounts.

Detail. This gives the name of the source when known; the date when known; the amount of loss, if any; the cross reference to another standard, when a weight probably belongs to a different system; the marks, if any, which are more exactly figured in pls. x to $x v$. "Merenpt." refers to the Merenptah palace site at Memphis; "Gebln." to Gebeleyn; "Karn." to Karnak.

The registers of metal weights (xliii-xlvi) are differently arranged, as the metals have both gained and lost; hence the total amount of change, by gain of oxygen and carbonic acid, and of loss by corrosion, scaling, cleaning and wear, must all be stated, in order to show how much uncertainty there is. After the number and form, as before, there is the present weight, Now, the total amount of the changes, CH ., the estimated original weight, and then the multiple, unit, and details.

The Peyem standard.
 Pls. XXVII-XXVIII.

20. This standard is guaranteed, and named P-Y-M (pl. xxiii) by three weights found in Palestine, of $112.2,117.4$ and 119.6 grains, averaging 116.4 grains.

There appears to be a reference to this word in a passage I Sam. xiii, 19-22, which is amended by Signor Rafaelli and Rev. Mr. Segel, thus:"And all Israel went down to the Philistines to forge every man his ploughshare and his 'éth and his axe and his goad; and the inducement was a peyem for the ploughshares and for the 'ethim and 3 killeshōn for the axes and to put a point on the goad." The bakhshish or bribe of a perem seems to be this standard weight of silver; the killeshōn is supposed to be the karasha of the Aswan papyri,
about 860 grains, or 5 khoirīnē (Pal. Exp. Fund, Quarterly statement, 1916, 77).

The existence of the peyem in Egypt is proved by twelve marked weights:-

No.	Weight		Mark	Unit	Peyem	
2017	1834	\div	4	$458 \cdot 5$	114.6	4
2023	2296.4	\div	10	229.6	114.8	2
2025	1379.3	\div	6	$229 \cdot 9$	114.9	2
2028	$230 \cdot 0$	\div	1	230	115.0	2
2031	6900	\div	3	2300	115	20
2037	1382.2	\div	3	$460 \cdot 7$	115.2	4
2042	23 I. I	\div	1	231-1	115.5	2
2066	1870.2	\div	4	$467 \cdot 5$	116.9	4
2086	117.8	\div	$\frac{1}{2}$	235.6	117.8	2
2132	481.0	\div	2	$240 \cdot 5$	120.2	2
2214	495.4	\div	2	$247 \cdot 7$	123.8	2
2235	$248 \cdot 7$	\div	1	$248 \cdot 7$	$124.3 \times$	2

The median of these is 230.8 or 115.4 for the peyem, closely agreeing with the Palestine average of 116.4 . In Egypt it seems that the double peyem was regarded as the unit. Further the importance and early date of this standard is shown by the large weight (2152) of $48476(\div 400=121.2)$ with the name of the " nesut rekh Ra-ne-onkh" (pl. x). The style of the signs and the name, alike fix this to about the vth dynasty. This person is probably the same as that of a tomb at Saqqarah (Mar., Mast. F. I); or possibly Ra-ne-onkh without the title nesut rekh, of a tomb at Gizeh (L. Denkm., II, gra). It is evident that the peyem was decimally multiplied.

Coming down to the xviiith dynasty, there is a limestone ball (2046) from Tell Amarna, stated to be 12 deben; allowing a maximum for loss, it may have been 14360, and could not therefore be 12 deben Egyptian; it was probably only 13870 . The unit would be 1197, or 1156 if without loss. It is evidently the deben, or 10 , of the peyem.

This standard is also known from documents of the x viiith dynasty. In papyri (Z.A.S., 1906, 45) values are reckoned in rings of gold weighing 12 to the deben; that is to say, the same unit as recorded in the last paragraph. As the extreme range of the qedet deben is 1375 to 1524 , the unit of the ring was between 114.6 and 127 grains; the range of the peyem is 114 to 125 grains. The ring appears to be called shoti in a papyrus, so that may be the Egyptian name of the peyem.
21. Delimitation. It might be thought that the list of marked multiples above was merely taken
out of a list which might be continued far to either side. On the contrary, this standard has a very high proportion of marked weights, 12 in 219 or over 5 per cent. In the adjoining daric system, twice as numerous, in 434 weights there is only a single one with its number of shekels on it. In the sela system (Phoenician), on the other side, there are 5 marked weights in 162, or 3 per cent. The normal Phoenician standard of 224 is never above 230 , and it would be impossible to assign to it weights up to 248 as above. The division between the peyem and the sela is best shown by the large weights. These are of $21277,21900,22130$ grains on the sela; then a gap, and the peyem begins 22930, 23480, 23800, 24190, 24260, 24300, 24450, 24600,24760 . Thus the average interval between the sela weights is 430 and between the peyem 240 grains, while there is gap of 800 grains between the systems. In the double of these weights the same gap is seen; the sela between 42180 and 44574 averaging 160 apart, then a gap of 1500 , and then an average of 600 apart in the peyem. Again in the duck and barrel weights the same interval is seen, between 112 and ir4 grains unit.

The division between the peyem and the daric is indicated at once by the cessation of marked weights of the above list, ending with 124.3 grains. It is also shown very clearly by the heavy weights. The peyem weights from 22930 to 24760 average 240 grains apart, then comes a gap of 890 grains, and then the daric weights average 180 grains apart.
On the double scale this is still plainer, as there are 8 peyem weights between 46054 and 49700 , and no daric or other weights larger, up to 55200 where the qedet system is reached. On looking at the total curve of weights of all kinds there is a very sharp drop at 125.0 , down to less than a third of the number, and this clearly marks the limit of the peyem. Thus the extent of range of the peyem variation is well distinguished, and the named and marked weights leave no possible doubt as to the reality of the standard.
22. History. So far, we have been dealing with this standard on lines that have been familiar, without any historic discrimination of period. This is equivalent, in length of period, to lumping together all weights from the Hyksos down to our own time; obviously we must expect confusion in so long a period. We can now begin the new method of separating ages by the forms of weights,
as described in chapter I. This opens an entirely new prospect in metrology. In place of having a very few weights dated by inscription, and which may be exceptional in amount, we can, by forms, put into their probable historic order most of the weights that we have. Beside the criteria of form which we have noticed, there are some other guides; the source of the weights may indicate the age, for instance those from Kahun being of the xiith dynasty; the material, for instance the haematite weights being of the xviiith dynasty. Using all the guidance, the following peyem weights are dated to the earlier periods, as marked in the catalogue.

Old Kingdom	Mid Kingdom unit	Empire unit
114.9	114.6	115.0
115.0	114.8	115.1
115.5	115.0	116.0
116.1	115.2	116.5
116.5	116.4	117.0
116.9	117.2	117.7
117.0		118.0
	120.2	119.7
121.0	121.0	120.1
121.2		120.1
121.7	123.7	120.5
	123.8	121.3
124.2		121.5
124.2		121.6
124.3		122.7
124.3		122.8
		123.6
		123.8
		124.0

Later than these, the rough and cuboid forms belong to the xxiind-xxvith dynasties, and the dome-topped forms to the xxvith-xxxth dynasties.
To examine these results, it is best to form a diagram, placing all the units of one age at one level, as in pl. I. Here the five periods are separated, and at once the result appears that the early weights group on three different values, 115-117 grains, $121-122$, and 124 grains. In passing from the vith to the xiith dynasties, the first group spreads wider, the second and third groups shift toward the first. In the Empire, the spread of each group is still wider, and the second and third groups are fused. By the xxiind dynasty the spreading has almost united all the groups, which are finally mixed into a general diffusion in the xxvith dynasty. In each group, the limiting examples of each
period are joined by dotted lines. This primitive isolation of three original units, and the gradual spread of their range until they are finally merged into a single widely inaccurate series, is most instructive; and, as we shall see, this is like the history of most standards of weight. It shows for the first time the real history of weights; and any theories of connection of standards must be based on the original values of certain components, and cannot be left merely in the vague uncertainty of the corrupt period. Whether there is any real derivation of standards one from another in the earlier times seems very doubtful.
In the diagram, the weights of the rst age of Gezer are marked G in the xviiith dynasty line; those of the 2 nd age ($1300-800$ B.C.) are in the xxiind line. These conform to the division between the high and low. The weights of the 3 rd and 4 th ages ($800-100$ B.C.) are placed in a line below, "Gezer late." They still show a gap at about ing grains. The letter P shows the values of the weights inscribed "peyem" found in Palestine. One such is lighter than the limit of the diagram. The scale of grammes is above, that of grains below, so that the results can be read in either standard.
23. Notes. The marked weights have been listed above, and the marks will be found on pl. x. The transcription of the inscribed weight from Tell Amarna I owe to Dr. Alan Gardiner. It may be rendered "The deben 12 borne by the stones (or weights) 2 of alabaster of Nefer-renpet." The present weight is 13860 grains; and an irregularity of the side is an early break, which may, or may not, have been before the inscription. From all the details it seems to be an original irregularity; the weight was not a finely finished example, but only a rough block, trimmed for copying the fine weights belonging to Nefer-renpet. Hence I should accept 13870 as the original, allowing for small bruises. This is expressly said to be 12 deben, showing a standard of 115.6 grains at Tell Amarna in the time of Akhenaten, very probably from some Syrian standard, agreeing with the central value of the low family of the peyem. A group of disc weights may be noted, as agreeing closely together, nos. 2133, 2157,2175 , weighing $48 \mathrm{I} \cdot 2$, $486 \cdot 0,489.4 \mathrm{grs} .205 \mathrm{I}$ is a different estimate of 2031 , accidentally entered in duplicate. Two fine weights from Gebeleyn (Brit. Mus.) give 6 and $60 \times 245 \cdot 2$, the double peyem, marked B in diagram pl. I.

CHAPTER IV
THE DARIC STANDARD.
Pls. XXVIII-XXX.

24. Of the existence of this system from very early times there is no question; it appears in the standard weights of Dungi, and the copy of those by Nebuchadrezzar, and plenty of lion and duck weights of the later period. Among the metal weights at University College, there are lion weights of 1 daric and two of 20 darics. Owing to the many different systems in which the name shekel was used, and the single and double shekel in the Assyrian system, it is needful to use the later name daric, which has only one meaning. There is only one weight marked with number of darics (2379), and that is roughly done.
25. Delimitation. The lower limit has been already placed at 125.0 grains, by the evidence just stated for the peyem. The upper limit is the division between the daric and the stater (Attic system). This is not easy to define, as the fractions ($\frac{1}{6}$) are the same, and the daric is often decimally multiplied like the stater. Further, the mina of 60 darics and its half, overlap on 50 and 25 necef and on 40 and 20 beqa. The classes which are clear of these other standards are:-

Duck weights,	none between	13	4.5
\# n	2550-270.1	127.5	135.0
\# \quad	658.0-672.2	131.6	134.4
	1311.6-1337.0	$13 \mathrm{I} \cdot 2$	133.7
Barrel weights,	none between, 129.9		133.0
n n	255.5-271.0	127.7	135.5
" \quad	661.5-671.8	132.3	134.4
$\cdots{ }^{\prime}{ }^{\text {n }}$	$1319.5-1335.0$	131.9	133.5
Fine edged dome top			
no daric, stat	er begins 1317	\bigcirc	$13 \mathrm{I} \cdot 7$
	$n, 2661$	o	133.0
Flat top, I daric	, stater begins 1315.3	0	13 I . 5
Rounded	3261.8-333r.6	130.5	133.3

From all these classes there is clearly a gap between 131.9 and 133.0 , narrowed by one class rising to 132.3 , while two others begin at $13 \mathrm{I} \cdot 5$ and 131.7 without any daric below them. Looking to the whole material, 132.7 seems to have an equal number of stragglers on each side, and may best be adopted as the dividing point, with 6 or 8 of each standard across the border, but distinguished by form, material, or multiples. The Gezer weights agree with this, the gap between
132.9 and 133.9 being much larger than any other interval lower or higher than this.
26. History. Rounded cones of limestone paste, which were moulded by hand, with a threading hole through the upper end, are found in the Gerzean age (Prehist. Egypt, xlix, 6-10). They are decorated with black line patterns, and no purpose can be assigned to these unless they are weights. There is also a double cone of clay, white washed and painted similarly, with a threadhole. On comparing the weights of these, they agree in simple proportions. There are also two stone rings, too large for a thumb, too small for a wrist, and a finely wrought syenite slab, which agree with the weights of the cones.

Cone	485.5	\div	121.4
Breccia ring	4435.0	$\div 36$	$3 \cdot 2$
Cone	313.5	$\div 2 \frac{1}{2}$	125.4
	$94 \mathrm{I} \cdot 3$	$\div 7 \frac{1}{2}$	125.5
Alabaster ring	3763.8	$\div 30$	125.5
Syenite slab	3785.6	$\div 30$	126.2
S.D. 4^{0}, cone	1267.0	$\div 10$	126.7
Cone	261.7	\div	130.8

These multiples agree on a system of decimal and sexagesimal, the $7 \frac{1}{2}$ being $\frac{1}{4}$ of 30 , the $2 \frac{1}{8}$ $\frac{1}{12}$ of 30 or $\frac{1}{4}$ of 10 . The range of the daric is 124.3-132.7, and that agrees fairly with the variations above. There seems, then, good evidence for granting that the Mesopotamian daric standard was brought into Egypt by the eastern invaders of the Gerzean prehistoric age. These are not incorporated in the catalogue of weights as there might be a hesitation as to their purpose, and the importance of them lies in their date.

The weights that can be approximately dated by the forms, in historic times, are marked with the dynasty number in the catalogue. In the diagram, pl. I, it will be seen how they are distributed. There appear to be two groups in the early period, five agreeing on 127.5 , and seven between 130.4 and 132.8 . Those of the first dynasty, marked I, are in the higher group. In the xiith dynasty, the 127.5 group spreads to $126.0-128.7$, and the higher group extends to 129.6 toward the lower. By the xviiith dynasty, the groups have become almost fused in Egypt, only showing a little gap at 128.6 -129.0 , wider than any other gap, except at the extremities. The Gezer weights are marked G. Probably 127.5 and 131.5 should be accepted as the earliest forms. The lower of these is the stand-
ard of the Assyrian weights, and Nebuchadrezzar's copy of the early standard of Dungi gives only 126.0 for the unit. The late coin of the daric was intermediate, 129.2 ; most likely it was a mean example of the fused standards in late times. The higher value appears in some coinage, as the Lampsacene staters of the satrap Orontes, averaging 130.4 .
27. Notes. The multiples of the daric standard were on two systems, the sexagesimal or old Babylonian system, and the decimal. Multiples on both systems are found from the Old Kingdom to the end, altogether 16 clearly sexagesimal, to 3i decimal. Looking at the higher and lower standard, they are almost alike in both; in the lower 15 sexagesimal and 29 decimal, in the higher 26 and 4 I respectively. It appears, then, that both systems of multiples were used throughout. On comparing curves of the distribution under the two systems, there is scarcely any change in common. The only point that might be significant is that the sexagesimal curve has maxima A and B, at 127 and 13 I ; these may well show the original units which group on 127.5 and 13 r , as stated above.

There is more uncertainty in the mina weights of this system than in any other, owing to the coincidence of three standards, the mina of 60 darics $7500-7960$, 50 Necef $7640-8500$, 40 Beqa or nub 7520-8400 grains. Thus all the daric minas except the lowest might be claimed on other standards. On comparing all the ambiguous weights with those of B which are above the mina limit, the probable division seemed to be that all the irregularly rounded, cuboid, and flat-top domed weights belonged to the daric, and the square, cylindroid and banded alabaster weights to the beqa. On comparing the daric and necef series, the higher multiples up to 31900 and 78600 stop with the D range and do not extend to N alone; hence doubtful cases should be given to D. Accidentally, no. 2355 is also entered as 2348 without addition for loss.

The notable weights in this series (pl. x) are those of Taharqa (2398) and of Onkh-nes-ra-nefer-ab (2597); they do not agree, giving 128.2 and 13 r. 6 for the daric. The former is inscribed "son of Ra, Taharqa, by Osiris in the midst of Sais, beloved." This is probably the Osiris Unnefer of Nesaft, in or near Sais, see Brugsch, Dict. Geog., p. 358. Another peculiar weight (2638) is a large duck with well-formed head, weighing 250 darics of 126.8 , or

240 (4 minas) of $132 \cdot 1$ grains. Unfortunately the marks on it (pl. x) are bruised and worn; they might read 12 or 16 or 4. As they cannot agree with 250 shekels, or any derivative of that, it is probable that this was 4 minas. There is a fine haematite weight of duck form, with the head and eyes carved, from Sparta, 20 darics of 128.6 . A weight from Malta is of a pointed dome form, pierced with a hole for a cord; it is a half mina, yielding a daric of $\mathbf{1 2 8 . 2}$. Both these latter I owe to my old friend Greville Chester, as likewise all the weights from Syria and Gebeleyn, beside others. One obvious 10 daric weight (2640) of 132I.9, has been re-marked with 9 cuts to show its value as 9 qedets of 146.9 .

This standard was of great importance early in the Mediterranean. The Knossos octopus weight is 29 kilos $=447,500 \mathrm{grs}$.; and 20 bronze ingots with marks (Bull. Paletnol., 1904, 101) vary from 27.0 to 33.3 kilos, median $29.4=453,000$ grs., giving a shekel of 125.8 grs . No very exact result can be stated until these are all accurately weighed and changes estimated.

CHAPTER V
 THE STATER STANDARD. PLs. XXXI-XXXII.

28. This standard, otherwise called Attic, is here named from its most celebrated example, the immense coinage of gold staters of Philip of Macedon. We do not know any early name for it, and to call it Attic or Solonic is only to put back the name a couple of centuries in some thousands of years of history.

Coming in between two well-known standards, the Babylonian daric and the Egyptian qedet, the stater has been often confounded with one or the other, and its separate existence as a standard has been denied. There are but two early marked examples here, 2803, of the Old Kingdom form, giving a unit of $134 \cdot 4$, and 2911 of the Middle Kingdom, giving 135.7 ; one weight in Cairo (31613) with a scarab on the top and number " 60 ," is 600 staters of $134 \cdot \mathrm{r}$. These are far removed from any qedet weight, the lightest of which with numerals gives 140 grains, and they are too high for any known example of the daric standard.
29. Delimitation. The gap between this and the daric has been described above. The most con-
clusive point is that some varieties of form are unknown in the daric standard, and only begin with the stater. The separation between this and the qedet is marked by the far greater proportion of duck weights of the stater; in proportion to the numbers of other forms, the duck weights are 5 per cent of the staters, and less than a thousandth of the qedet, fifty times more numerous in one than in the other. In the class of good domed weights there is a clear gap between 2698.9 and 2768.8 or 134.9 to 138.4 grs . unit; again, in rounded weights there is a gap between $347 \mathrm{I} \cdot 7$ and $3522 \cdot 9$, or 138.87 to 141.32 . On looking at the whole of the series in curves, it appears that 137.5 is the point where the two standards are equally usual; each must have a few examples extending across this point, which can only be distinguished when peculiar in form, material, or multiple. The heavy weights bear this out, though they are not very numerous. There are eight of 400 qedet, ranging from 151.7 to 138.0 for the qedet, and nothing whatever below that, till reaching 400×124.2 on the peyem standard; thus there are no weights of 400 staters or darics, and the qedet begins at 138.0 . In the next grade, there are sixteen weights of 500 qedet from 151.4 down to 138.5 , and then only one below that, of 135.4 . Of the 1000 qedet series, there is a gap between 1000 staters of 134.5 and 1000 qedet of $\mathbf{x} 38.5$. Thus the heavy weights prove that the qedet series ends at about 138.0 . From this, and the previous difference of 50 to I in the proportion of duck weights, between the two standards, it seems impossible to doubt the distinction between the stater and the qedet, however much they are naturally confounded by their nearness, and by examples crossing the border lines, especially in the later confusion of standards.
30. History. In the diagram, pl. I, it appears that there were two forms of the standard in the Old Kingdom, about 134 and 136 ; a unit of the latter value is supported by a weight in Cairo (31281). The same separation appears in the few weights of the xiith dynasty. After that there is no clear break, and only a confused mass of weights in the Greek period, hence the lack of discrimination in writers on metrology. The Gezer weights of the xviiith dynasty onward do not show any such grouping.
The lower standard is what is best known from the Attic weights of 13_{4} grains in trade, though never exceeding 133 for coinage. The higher standard of

136 appears in the early haematite weights from Troy, pl. xlix, between 136.4 and 137.4 . Thus the varieties we see in early Egypt continued to be reflected in other countries to a later time.

Notes. Outside of the barrel and duck weights there is little that is distinctive between this and the qedet; as a whole, the stater is of rounded forms, seldom fine or clean-cut, and often bad and ill-defined, whereas the qedet is the best cut of any group, and generally of clean forms and sharp edges.

Of peculiar weights, beside the two marked ones noted already, there is no. 3042 of 274.8 with a large Δ cut on it, showing it to be 4 drachmae of 68.7 . As a whole, the stater series is not distinctive or interesting in detail. A fine weight of basalt of the ivth dynasty in Turin is inscribed for the kher heb, Hep-ata ("Law of the prince"). It is marked ro, giving a unit of 267%, or 2×133.95, marked T on the diagram, pl. I.

CHAPTER VI

THE QEDET STANDARD.

Pls. XXXIII-XXXVII.

31. This is by far the most numerous standard in Egypt, and has generally been regarded as especially Egyptian. It is the basis of nearly all statements of weight from the xviiith dynasty onward. The multiple of 10 qedets was termed the deben, and 10 debens were termed the sep, in the xxvith dynasty (P.S.P.A., 1893, 309). Deben is however a name applied also to other standards.

The marked weights are not more than a hundredth of all, in this standard. Their evidence is varied; two give the qedet, and two the deben, on the basis of $140-150$ grains ($3 \mathrm{ro2}, 3218,3453$, 4491); five give the double of this as the qedet (3178, 3260, 3343, 3484, 3547); one gives a quadruple qedet (3234). There was, then, the confusion of single and double values, as known in the daric and other standards.

The marks are more usual on the light varieties, mostly on a standard of 138 to 141 , special emphasis being on values of 140.0 " of the treasury of Heliopolis" (Brit. Mus.), and 140.4 " of Heliopolis" (Louvre), and about 139 " of the treasury" (4985); others are nos. 3102, 3178, 3218, 3234, 3260, 449 r . The heavier examples that are marked are much more scattered, 142 (3343), 144.0 (3453), 144.3
(3484), $145 \cdot 6$ (3547), $149 \cdot 5$ (3746), and the most important 150.0 with the name of Aohmes II (Brit. Mus.). There is also a deben of the Old Kingdom (3746) of 1494.7 grs., roughly marked 8 , probably to correspond to 8 khoirinēs of 186.8 . It is evident that the high value of 150 had strong support, though in Saitic times there was a ruling Heliopolitan value of 140 grains.

In late times, there was a fractional standard called the khenp, a word that has too many meanings; the khenp-deben was $\frac{1}{5}$ th of a deben, the khenp-qedet was $\frac{1}{2}$ of a qedet, thus making a binary system of $\frac{1}{2}, 1$ and 2 qedets (P.S.B.A., 1893 , 310-312). The $\frac{1}{2}$ qedet and 2 qedets were the Egyptian drachm and tetradrachm.

Delimitation has already been noted between the stater and qedet, and that between the qedet and necef will be noted under the latter.
32. History. The history of this standard is not well defined, owing to its not being so common as some others in the early periods. The earliest stage appears to be at the rise of the Ist dynasty, when half a dozen alabaster cones (viii, 915) were placed in graves, sometimes singly, or else two together (Tarkhan, II, p. ir, pl. ix). As the cone with a curved base occurs in prehistoric weights and with a flat base it is common in xiith dynasty weights, there is fair ground for accepting the Tarkhan cones as weights. As they occur singly, or two together, they cannot be pieces for a game. The details of these are:-

No.	Grave	s.D.	Grains	\div	Unit
3272	1568	78	$845 \cdot 3$	18	$47 \cdot 0$
4050	717	79	$478 \cdot 2$	10	47.8
3499	717	79	144.8	3	48.3
3541	728	78	872.6	18	$48 \cdot 5$
4352	1892	77	$980 \cdot 0$	20	$49 \cdot 0$
4363	728	78	985.0	20	49.2

The standard thus appears to be the qedet, but divided by three, and this is the case in 45 in stances in the list of historic times. The multiples 18 and 3 might as well be 6 and 1 qedets; but the multiples 10 and 20 strongly show that the third of a qedet was the unit. These were misunderstood at first and are entered in error to 3 and 7 qedets in the list. The qedet here would be from 141 to 147 grains.
Referring to the diagram, pl. I, it is seen that the Old Kingdom weights extend over the whole space between the values 141 and 148 as given in
the Ist dynasty. There seems to be probably a gap between 145.6 and 147.7 . If so, we may look on the early weights as indicating two families, centering on 144 and 149 . On reaching the xiith dynasty such a division disappears, and no clear families can be traced. In the x viiith and xxiiird dynasties the mixture is so continuous that it is useless to figure it, and all that can be said is that there was a low group of 138.4 ; but from 140 to 148 there is no separation, and a grouping at 151 in the xviiith dynasty is lost in the xxiiird.

If it were possible to get sufficient examples from single localities of an early period, perhaps the origin and growth of the variations might be traced. For instance, 9 out of 12 from Kahun of the xiith dynasty are between 140.6 and 144.0 , pointing to a standard of about 142.5 , with rare examples of 147.2 and 149.3 . In late times there was a definite standard of 140 at Heliopolis. In the Delta, in Greek times, there is so close a relation between the curves of distribution at Naukratis and Defenneh (Tanis, II, pl. L) as to point to five standards between 138 and 149, equally diffused.
The best that can be said seems to be that there was during the Old and Middle Kingdom a principal standard of about 145 grains, with local variations up to 150 ; and that in the x viiith dynasty two extreme groups of 138.5 and 151 became attached to the qedet, more probably by assimilating some foreign standard, rather than by variation of the earlier qedet. The gold shell of Taoa (Theban x viith dynasty) points to 151 being a southern unit. The Heliopolitan standard of 140 points to 138.5 being of northern or eastern origin. The great mass of hundreds of small weights of late period are so generally diffused that they are of no value for determining the standard.
33. Notes. There are not many peculiar weights in the qedet series; they are mostly plain conventional forms of the Saite age, and so much commoner than other standards that they did not require marks.
3102 has the names and titles of Apries with the numeral 40 (pl، viii); this serves to vouch for multiples by 4 and 40 , but, owing to a large piece being broken away, the original weight of the deben is not precisely fixed.
3162 has the seal hieroglyph of the chancellor, lightly engraved on the top.

3218 is a splendid hippopotamus head in haematite, marked $\|\|\|\cap\|\| l$, ten qedet in two methods of numbering. It is from the Set temple of Nubt, a temple standard.

3336 is of brown serpentine, oblong, with rounded top edges, obviously Roman.

3392 of alabaster, thin, with rather bulgy outline, is from Nubt.

3594 has the mark Λ, probably 10; and, if so, ro thirds of the qedet; the form seems influenced by the cheese-shaped Roman weights.

3687 is a finely polished block with slightly curved faces, of black quartzose stone.
3722 is a mace head form of black and white porphyry; that it is a weight is suggested by a similar form of grey syenite from Meroe, 3795, which also agrees with the qedet standard.

3876 is a simplified duck form of yellow limestone, with a large plug of lead up the axis, for adjustment.

4982, 5003 are hollow cases, filled with lead.
4985 has the mark of the per hez or treasury, and agrees in the light standard.

5015 is of black steatite of Roman age, and therefore placed with late weights.

5028, $5046,5049,5095$ are a set of four weights found together, and then completely cleaned, with full allowance for the scale removed. They serve to show exactly how much variation existed in a single set.

5034, 5044, 5080, 5086 all have loop handles on the top.

5068 is an octagonal barrel weight, with an eye at the end; through this is a ring of four-sided rod, thinned to the ends, which are coiled round each other in Egyptian fashion. It has been adjusted by adding three turns of strip copper, around the ring.

5094 is a very large bronze weight, which had a handle let in to the top of it, now lost.

CHAPTER VII
 THE NECEF STANDARD.
 Pls. XXXVII-XXXVIII.

34. THIS standard was first found named in 1890 , and by 1912 no less than six examples were known from Palestine bearing the name in early Hebrew (xxiii); five of these are single necef, and one is a quarter necef. The name is written with the
letters nun-tzaddi-pe, and in English usage it may best be called necef, the vowels being unknown to us. The name may perhaps appear in Egypt as the nusa, see P.S.B.A., 1892, 440. The Palestine weights yield $153.5,154.3,156.8$ and 157.6 grains for the unit (excluding two damaged examples), the mean being 155.5 .

On the Egyptian side, there is the literary evidence of $\frac{1}{9}$ of a qedet of gold being a unit of value at Karnak (P.S.B.A., 1892,440). The range of the qedet implies that this gold unit was between 153 and 169 grains. Thus it agrees with the necef. There is also the evidence in the inscriptions of Tehutmes III, that the irregular multiples of tribute stated in qedets, agree to regular multiples of a basis of about 160 grains. There are many other Asiatic examples of weights also on this basis (Encyc. Brit., 80 grain standard).

The marked weights here catalogued vary in the multiple adopted for the unit.

No. 4045	398.1	arked	5	gives		of 159.2
» 3939	$38 \cdot 5$	n	$\frac{1}{4}$	n	I	154.0
„ 3962	154.9	n	2	"		$\times 154.9$
„ 3927	307.5	"	8	"		$\times 153.7$
4071	40100	n	5	"		$\times 160.4$

Thus the unit was taken as the Palestine unit of 154 , or the half, or double or quadruple of it; the mina was of 50 necef.
35. Delimitation. The square weights are less than 1 per cent of the qedet, while they are 5 per cent of the necef. On looking at the distribution of these, there are but 4 in a range of four grains, from 148 to 152 , followed by a close group of 5 in the space of 153.6 to 154.3 ; hence it seems that the division is between 152 and 153.6 . The heavy weights also show a break, eight 40 -deben weights ranging from 55,200 to 59,750 ($=138.0$ to $151 \cdot 7$), and then ceasing; after which, the 500 daric weights run from 64,830 to $66,000(=129.65$ to 132.0); in these, therefore, there is no example of 400 necef. On searching the curve of distribution between 152 and 153.6 it appears that the point of crossing of the qedet and the necef is at 152.4 ; and probably some qedet extend over 153 , while some necef may begin at 151.5 . Thus between 151.5 and 153.5 the separation of the weights must depend upon the forms. The necef was very commonly dome-topped, with the sharp edge of the $x x v i t h$ dynasty style, like most of the qedet; but it was very rarely domed from the base upward, like
many of the qedet weights. As noted above, the square weights are five times more common in the necef than they are in the qedet. The limits of the necef and the khoirine will be noted under the latter.
36. History. On looking at the diagram (pl. I) of the distribution of these weights, arranged according to period, it appears that there were two standards somewhat separated at first. The lower is from ${ }_{153.2}$ to 154.3 , or 155.6 in a Cairo example; the upper is from 160 to 164.5 . These two, which were quite separate in the square weights of the Old Kingdom, became spread nearer to each other at 157.0 and 159.7 in the xiith dynasty, and became almost unified in the xviiith dynasty. A separation still existed in the xxiiird dynasty between 156.9 and 160.8 ; and the Gezer weights show the same separation, being all of the lower standard in the xviiith dynasty. The late weights of the Saite age are indicated by the number of each grain, and show a maximum at 154 , and then a fairly steady dwindling down to 168 . The history, therefore, seems to be that the unit of 154 grains was the early form, preserved in Palestine as 155 grains; that another unit of 163 grains existed in the Old Kingdom, which became confused with the 155 grain necef in the xviiith dynasty, but was never unified with it, and while separate in the xxiiird dynasty, was spread out by variation as a long and diffused extension of the 155 grain necef in the Saite age.
37. Notes. Regarding the various ambiguous examples which might be attributed to either the necef or the daric mina standard, we have already noted (under the daric) that in the higher multiples, up to 10 minas, the series ends with the range of the daric, and does not extend into the range where the necef is alone. This gives ground for attributing all such weights to the daric, and they are accordingly marked in the necef series with D prefixed, and given in full in the daric series.
Peculiar weights of this series which should be noted are no. $3914,765.8$ grains, with the khent sign on the top; no. 4045, 398.I grains, a rough cone of alabaster with five holes marked on the base; and a red marble disc, no. 4101 , 164.0 grains, with the Christian monogram on the top, probably the latest example of the necef. On the whole, there is not much of interest or peculiarity in the series, which is largely of the Saite age, as shown by the quantity of dome-topped weights like the qedets.

CHAPTER VIII

THE KHOIRĪNE STANDARD. Pl. XXXIX.
38. DURING recent years many weights have been found in Palestine bearing a sign, of which one example occurs in Egypt, see no. 5152, pl. xiii. This sign appears to be a monogram of $k h$ and o, presumably the beginning of a name kho-. With this sign are various multiple numbers $\mathrm{I}, \mathrm{II}, \mathrm{L}, \perp$, which, by the weights, have obviously the values 1, 2, 4 and 8 ; there is also a $\frac{1}{3}$ unit marked l b. The name will be considered further on.
Unfortunately there has not been any critical examination of the Palestine weights to determine their gain or loss. It is not possible therefore to come to any exact conclusion as to their mean value, or range of variation. It may be said that the stated range of the kho series (omitting one extreme instance) is from 173.6 to 179.4 , with a mean value of about 177.5 grains.
The number of weights which appear to belong to this standard in Egypt is less than that of any other standard; there are barely 150 in this collection. Of these, only three of stone are marked with numerals; (4230) of $\mathbf{3 6 2 . 7}$ grains is $2 \times 18 \mathrm{r} \cdot 3$; (4149) of 171000 is 5×342, the double of 171 ; and (4253) of 36976 is 10 of 3698 , or 200 of 184.9 . One of bronze 5152 has the monogram XO, and is 2 of 189 grains.
39. There is an interesting group of five cowry shells carved in grey syenite, evidently all from one source, though bought singly. The largest weighs 4 of the next one, and that double of the next, and these are respectively $2, \frac{1}{2}$ and $\frac{1}{4}$ khoirinē; the others agree to $\frac{3}{10}$ khoirinē. See pl. xvi.

No.	4248 (ix)	368.0 grs	2×184.0	
η	4214	89.8	η	$\frac{1}{2} \times 179.6$
η	4217 A	45.0	$\#$	$\frac{1}{4} \times 180 \cdot 0$
η	4205 A	53.6	$\#$	$\frac{3}{10} \times 178.7$
η	4196	53.3	$\#$	$\frac{3}{10} \times 177.7$

No other weights cut in the form of a cowry shell occur in the whole collection. These are marked on the diagram, pl. I, by Φ along the top of the khoirinē series. See pl. xvi.
Turning next to the name, the cowry was named by the Greeks khoirine, as Prof. D'Arcy Thompson has kindly informed me; his notes on the subject are added here as an appendix. This name seems at once to give the source of the monogram kho
found upon the weights. The khoirine shell was very familiar to the Greeks, as it was that used in ballotting. May it not be then that these shells were used for rough weights? To any one familiar with the broken brickbats, chunks of stone, scraps of China plates, and many other casual masses which are common as weights in Oriental markets, a lot of apparently uniform shells will seem respectable as weights. Through the kindness of Dr. Bather, my enquiry about Aegean cowries has been answered by Mr. Cosmo Melvill, who states that a specimen of Cypraea lurida weighs 214 grains, and C. spurca and physis about 120 or 130 grains. Dr. Harmer further states that C. lurida from Cape de Verde Islands is 200 grains, and from St. Helena is 142 grains. There is, then, no improbability in a growth averaging about 180 grains having been found in the Mediterranean; or the standard may be older than the use of the shell, and examples chosen which agreed with it. We may thus fairly link together the khoirine shell, the artificial cowries of syenite, and the weights marked kho.

Delimitation. The break between the necef and the khoirine is shown in the simplest way by the single unit stone weights. Of these there are ${ }^{3} 5$ of the necef between 152.4 and 167.9 : after that an entire break, and then 14 of the khoirine between 172.4 and 185.2 . Looking at the whole series, 168 grains is the point which best divides the standards.
40. History. On mapping the distribution of these weights according to age (pl. ii), there appear two groups. An example at 171.0 in the Old Kingdom (with marked numerals) appears to be the parent form of two in the xviiith dynasty, of the same value, and 172.7 . On the other hand, the great mass of examples begins with 185.0 to 187.4 grains, and spreads out in the xiith dynasty to 176.5 to 188.5, and to 176.1 to 190.0 in the xviiith dynasty. By the xxiiird dynasty, examples appear, fusing together the two groups; and in the xxvith dynasty there is an almost continuous variation centring mainly about 176 , but tailing off to 190 . This is the foundation of the Palestine group with marks, centering on 177.5 . The Gezer weights of the xviiith dynasty show the division as in Egypt at that date, between 172 and $177 \cdot 6$; but the later weights agree with the fusion of varieties seen in Egypt. This history of the standard, thus traced by the forms of the weights, is a warning against accepting any late group, such as the Palestine
marked weights, as a basis for discussing the origin of weights.
41. Notes. The value shown by the cowries is marked along the top of the diagram. One remarkable weight should be noted, no. 4254. This jasper weight of king Khety of the ixth dynasty (xi, 4466) bears on the end of it, apart from the inscription, the numeral 9 . It is very unlikely that this was the original intention for the weight, but, like many other numerals, it has been added to show the value by a fresh standard. Unfortunately, fractures have destroyed the accuracy of this weight, but it was originally about 1850 grains, or 10 khoirinai, and it thus shows that we are justified in tracing the khoirinē back to the Old Kingdom. The weight has been converted into 9 of the gold standard or beqa. The first weight on the list, no. 4141, is very low, and would not be placed to this standard, were not its form like that of no. 4220 , and its material, amazonite, like that of no. 423 I . The cowroid forms, nos. $4142,423 \mathrm{I}$, agree with the syenite cowries, and the khoirine connection of this standard.

CHAPTER IX

THE BEQA STANDARD. Pls. XL-XLI.

42. This standard has been recognised in Egypt during the last twenty years, and commonly called the gold standard, as the weights often have the hieroglyph of gold upon them. As there are here as many as 24 examples bearing numerals, it is scarcely requisite to extract them from the catalogue, in which they are all marked. The range of variation of these marked weights is from 189.7 to 215.2 grains for the unit.
In other collections several examples occur of weights of this standard with royal names and numerals, which are entered in the diagram. The weight of Khufu of 2060 grains, gives 206.0 for the unit. That of Senusert I is 4 units of 213.0 . Of Amenemhet III there is a weight of 4 units of 196.r. In the xviiith dynasty is a weight of Amenhetep I giving 5 units of $207 \cdot 6$, and one of Te hutmes III giving 6 units of $197 \cdot$. A weight which is probably of the Old Kingdom, by the name, Ampy Ptah-ne-kau, gives 10 units of 218.8; but this is higher than any other marked weight, and probably belongs to the sela, the so-called Phoenician standard. Thus weights which by the royal
names were probably more accurate than usual, vary from 196.I to 213.0 , without any regular order of changes.

The name of this standard is given by three marked weights found in Palestine (xxiii), each with the word beth-qof-'ayn, spelling beq'a. These weights are of $90.6,94.3$, and 102.6 grains, the half of a 18 I to 205 grain unit. This standard was used in the earliest Hebrew literature, as it is named as the weight of the gold ring given to Rebekah, and the poll tax stated in Exodus xxxviii, 26. This is evidently half of the Egyptian gold standard, and there is no reason for forcing it into any supposed relation to the Hebrew shekel of any period. The double unit, like the Egyptian, is indicated in Palestine by a small weight in the form of a tortoise, marked 5 or $\frac{1}{5}$; as it weighs only 38.6 grains, it must be $\frac{1}{5}$ of 193 grains.
43. Delimitation. The lowest value shown by a weight (4299) marked nub "gold," is 189.7 grains. The barrel form which is often seen in all other standards (especially in the daric) is entirely absent from the beqa, there being no barrel weights of a unit between 191.7 and 218.4 grains. Other forms of the beqa exist, but are not found in its lighter variations, so that there is a wide gap between the higher khoirinē and the lower beqa weights. Thus, there are no examples between the following values of the unit:-

Duck weights	to 188,	none to $199 \cdot 1$		
Domed	up to 190,	$\#$	to $199 \cdot 9$	
Rounded	η	up to $191 \cdot 7$,	η	to $199 \cdot 6$

Looking at all the examples about the critical range, it seems that 188.0 may be accepted as the best dividing point, with a few of each family crossing this division.
44. History. The history of this standard (pl. ii) begins earlier than that of any other. Six of the prehistoric graves at Naqada each contained one block of limestone, of some form which had no parallel among working tools (vi, 456, 458; viii, 88i, 883). The list of these, and three similar blocks of unknown source, is as follows:-
\(\left.$$
\begin{array}{ccccccc}\text { No. } & \text { Grave } & \begin{array}{c}\text { Sequence } \\
\text { date }\end{array}
$$ \& Weight \& Unit \& Form

3175 \& 461 \& 40-61 \& 2785 \& \div 15=185 \cdot 7

\& \& \& \& or \div 20=139 \cdot 2\end{array}\right\}\)| 913 |
| :---: |
| 4296 | B. 107

| No. | Grave | Sequence
 date | Weight | | Unit | Form |
| :---: | :---: | :---: | ---: | :--- | :--- | :---: | :---: |
| 4358 | 1873 | 46 | 589.7 | \div | $3=196.6$ | 646 |
| | | | $790 \cdot 0$ | \div | $5=197.5$ | A |
| 4392 | 1866 | 4^{3} | 3996.6 | $\div 20=199.8$ | 456 | |
| | | | 418.4 | \div | $2=209.2$ | B |
| 4543 | 1563 | 32 | 4224.5 | $\div 20=211.2$ | 883 | |
| 4553 | $?$ | $?$ | $2180 \cdot 2$ | $\div 10=218.0$ | 458 | |
| 4555 | $?$ | $?$ | 118.0 | \div | $\frac{1}{2}=236.0$ | 456 |

Three of these $(4296,4321,4543)$ are cylinders with rounded ends (forms $88 \mathrm{I}, 883$); three (4332, 4392,4555) are domes with rounded bases (form 456); only one weight (4358) is of the bulgy square form (646) usual in the Old Kingdom. Two are of unusual forms, A a porphyry turtle, B a porphyry cylinder; as the forms are not characteristic of weights, they are left here unnumbered. The cylinders with rounded ends are the earliest, being of S.D. 32, 33, and between 3 I and 41, all therefore of the Amratian prehistoric civilisation. To the Gerzean civilisation belongs the dome with rounded base (4392) S.D. 43, and the bulgy square (4358) s.D. 46. As regards the standard, all but two of these are simple multiples of a unit between 188.7 and 211.2 grains, agreeing closely with the limits of the beqa in dynastic times. The multiples 3, 6, 15, and 3o show strongly a triple form. This triple multiple would bring it into relation with the later qedet, 3 of the lower family of the beqa being equal to 4 qedet: this relation may account for the frequency of 40 qedet weights ($=30$ beqa) and $\frac{1}{3}$ qedet ($=\frac{1}{4}$ beqa) in later times. But though the first may be the qedet, one could not ascribe all the above examples to the qedet, for multiples of $13 \frac{1}{3}$ and $26 \frac{2}{3}$ would be quite unlikely. It might be supposed that the prehistoric Egyptians had not reached the art of weighing; but their high mechanical ability, and the presence here of a small balance beam, of a red limestone which is peculiar to prehistoric times, give ground for crediting the above blocks as being weights.

At the beginning of the Ist dynasty, conical weights were used; two of these were found at Tarkhan (4352, 4363; viii, 9, 156), as noted under the qedet; they are of 980.0 and 985.0 and appear to be 5 beqa of 196.0 and 197.0 grains. Of about the same age is the gold bar of Aha, weighing 216 grains, which can scarcely be unconnected with the gold standard (Royal Tombs, II, 2I).

In the Old Kingdom, the lower standard is the more compact, 196 to 202. The higher standard
spreads out from 206 to $213 \cdot 5$; and the extreme amounts are the important examples, above mentioned, which are likely to be standards, one the gold bar with the name of Aha, the other the fine weight with the cartouche of Khufu. Intermediate examples show that these are not isolated values, nor due to casual error. It will be seen on pl. ii that the heavier group continued to extend toward the lighter, the ixth dynasty weight of Khety, and the second marking (4445) of weight (4507) 208.7, coming below the Khufu standard. The weight of Khety, however, must not be taken as exact, for the marking of 9 upon it, as before said, is probably only a secondary assignment of the 10 khoirine weight.

In the xiith dynasty, the range is wider in the low standard, 188 to $202 \cdot \mathrm{r}$, and the high standard is also widely spread from 204.4 to $215 \cdot 2$, but not quite reaching the Aha weight. In the xviiith dynasty, the gap between the upper and lower standards is even wider than before (201 to 205.5), and there are royal weights in both, as before. It is not till the debasement of the xxiiird dynasty that the two standards are finally confused. The Gezer weights of this period and earlier, are eight of the low standard, and only one of the high; this points to the low standard being Syrian.

Amid this wide inaccuracy and duplication of standard it should be observed how several important weights agree on 196-197, the Ist dynasty cones, the splendid weight of Herfu, that of Amenemhet III and later of Tehutmes III. These seem to mark a definite standard amid the wide range of 188 to 202 grains.
45. Notes. This standard is one of the most interesting on account of the many marked and dated examples, and the fine forms often occurring. The most beautiful weight in the collection is the large one, pl. vii, type 694, of light green veined marble (4355), in perfect condition and polish, made for the "Hereditary prince, royal seal bearer, sole companion, keeper of the seal, Herfu, living again." Unfortunately the locality of this is unknown, as I bought it from Aly Araby; see a scarab of Herfu in the Louvre, Salle des Dieux (P.H.S., 444). Other weights of the same form bear the sign of gold, and numerals (4416,4547). Two weights of the Old Kingdom (4455, 4507), much rounded, with finely cut numerals, are of a beautiful red-veined limestone, which I have not seen elsewhere; these are from Quft (pl. xi). Another Old Kingdom weight
(4399), now much broken, must have been splendid when originally made, as it is of fawn-coloured chert, well rounded and polished (pl. xi). A pleasing series of weights are those of haematite from Tyre, of truncated cone form (viii, 893), nos. 4360 , 4382, 4388 . They agree closely in a mean standard of 199.2 , varying less than 0.2 grain from it. Two curious weights of white marble from the temple of Byblos (4325,4385), bear a pair of breasts on the top, in one instance united by a cross handle. They vary somewhat in unit, and the lighter might equally well be 5 minas of the daric; but the heavier one is beyond the range of the daric, and so both probably belong to the beqa in its later character as the Aeginetan standard, of which these weights equal 4 minas. Similar weights in the collections are from Syria and Knidos, and belong to different standards.

A rather irregular series of unusual form are the sharp-edged discs nos. $4365,44^{39}, 4488 \mathrm{~A}, 4517$, 4544, 4554. They have, all but one, been worked out of thin veins of quartz, varying in colour from white to yellow, pink, and brown. Two of the six are known to come from Quft, and from the similarity of material and form they were doubtless all made there. The average unit of these is 208.4 (mean diff. 5.6), and hence they belong to the higher standard. Four other weights from Quft average 206.4, and it seems therefore that the high standard is south Egyptian.

The Golenicheff weight of 2025 is probably 10 beqa, though marked 8 for the double daric system (Rev. Eg., 1881, 177).

CHAPTER X

 THE SELA STANDARD.
Pl. XLII.

46. This is a very well known standard of weight, usually called the Phoenician or Alexandrian. As we have used the original or specific names of the other standards, instead of local names, it is desirable to use one of the ancient names here. The shekel is only a general term, and the sole distinctive name is sela, which was the later Jewish name of this shekel. As S is already appropriated to stater, the second letter L will be used for sela.

The marked weights here are:-

No.	Grains	Mark Unit	Period
4590	8570	$\div 20=428.5$	XII
4593	429.4	$\div 2=214.7$	VI
4612	432.4	$\div 2=216.2$	VI
4626	1303.6	$\div 3=434.8$	XXVI
4665	882.4	$\div 4=220.6$	Ro.
4669	3534.4	$\div 8=44 \mathrm{I} \cdot 8$	Ro.
4688	8900	$\div 20=445^{\circ}$	XII

It appears therefore that the double unit of over 400 grains, as well as the single unit, belong to both early and late times.
47. Delimitation. The nub-marked weights of the beqa extend up to 215 grains. The good domed weights are entirely absent between 1592.8 (the necef) and 2192.4 (the sela), so the khoirine e and the beqa were omitted. In the larger weights, of rather over 4000 grains, there occur clear gaps in the series. Thus in the cuboid weights there are 5 between 207.8 and 209.8 of beqa unit, and then a gap to in between 213.8 and 226.3 of sela unit. Similarly in the roughly rounded weights there are 6 between 199.7 and 209.6 of beqa unit, a gap, and then 7 between 215.1 and 227.5 of sela unit. These various limits indicate that the beqa usually ceases at 210 (though four marked ones are known above that, up to 215); and the sela begins about 214. Looking at the whole series, probably 210 grains may be accepted as the best division, as there are special reasons of form and material for any exceptions on either side which cross that limit. The boundary between the peyem and the sela was dealt with under the former standard.
48. History (pl. ii). This standard begins in the Ist dynasty, with a block of porous basalt, weighing 438.9 grains; from the tomb with the name of a queen Sma-nebui, apparently about the time of Mena. This falls in the middle of the range of Old Kingdom weights, which show a unit from 214.7 to 227.0 . In the xiith dynasty, the examples were rather more scattered. In the xviiith dynasty, the middle values became commoner, about 218; and these increased still more in the xxiiird dynasty. The Maccabean shekel was 220 grains. The Gezer weights of late periods show much the same variability.
49. Notes. As a whole, this standard is marked by the large proportion of irregularly formed weights, more than a quarter of the whole; while fewer dome-topped weights of the regular Egyptian form appear than in any other standard. Barrel weights are scarce, and there is but a single duck
weight. A peculiar form is the half of a thick disc; one of these (no. 4714) has an inscription on the edge ($\mathrm{pl} . \mathrm{vii}, 701$), of the "Hereditary prince, purifier in the temple of Ptah, sam priest, high priest of Memphis, Hora." Several unusual forms occur in this standard, such as no. 4579, a roughly cut ram in limestone; no. 4626, a wolf's head in basalt; no. 4719 , a duck's head; no. 4697, a large rectangular marble weight with the figure of a man on the top, from the Lebanon; no. 4716, a triangular prism (viii, 874), apparently of jade, with the name of Ptah finely cut on the end; no. 4557, a curious lump of haematite; and, above all, the finely inscribed weight (pl. vi, 656) of Nefer-maot, no. 4740, certainly of the early ivth dynasty.
A weight at Berlin has upon it "copper 15 "; as it weighs 6343 grains, it shows a unit of 423 grains, or twice $211 \cdot 5$, which is evidently this standard. There is here the wolf's head (4626) weight marked gamma, 3, showing a unit of 434 grains, which accords with a triple multiple of this standard. But it seems possible that both of these are remarked, and were originally 50 darics of 126.9 and 10 darics of 130.4 . The weight of Ampy Ptah-ne-kau at Berlin, inscribed "deben 10 " is 2188 grains, and the unit of 218.8 agrees much better with the sela than with the beqa.
50. The values which we have found for the original units, (before their fusion formed the standards known historically), are the material necessary in any search for an original connection between them. Many theories exist of one unit being formed by multiples or fractions of another; the original bases of any unit are the quantities involved, and it is useless to compare the vague values made in times long after a unit originated.

The following are, then, the amounts which have to be considered in any theories of derivation of standards, and the equivalent cubic inches of water.

peyem	Grains	Mina	Cub. ins.	Grammes
	\int_{116}	5800	23.0	7.5
	121	6050	24.0	7.8
	124	6200	24.6	8.0
daric	(127.5	7650	30.3	8.25
	131.5	7900	31.3	8.5
stater	134.5	6725	$26 \cdot 7$	8.7
qedet	145	7250	28.8	9.4
necef	(154.5	7725	30.7	10.0
	162	8100	$32 \cdot 1$	10.5

khoirinē

beqa | Grains | Mina | Cub. ins. | Grammes |
| :---: | ---: | :---: | :--- |
| 171 | 8550 | 34.0 | 11.05 |
| 185 | 9250 | 36.7 | 11.95 |

sela | 196 | 9800 | 38.9 | 12.7 |
| ---: | ---: | ---: | :--- |
| 210 | 10500 | 41.7 | 13.6 |
| 220 | 5500 | 21.8 | 14.25 |

One of the widest uncertainties in the later state of the standards is in the similarity of 6 darics, 5 necef, and 4 beqa. On referring to the original components, and multiplying them as above, the results are:-

daric	necef	beqa
765	772	784
790	810	840

Thus none of the original components are alike, and the resemblances of later forms are merely casual.

Another possible connection is that 5 peyem are 4 qedets. This is by the qedet 580 , and by the lowest component of the peyem also 580 . Both of these are at least as old as the ivth dynasty, and probably the qedet is of the Ist dynasty or earlier. The scantiness of early material leaves the direction of derivation uncertain.

The lower khoirine seems to be the source of the late Persian 86 -grain unit, which has hitherto been taken as derived through a silver weight equal in value to a gold standard. This implies that the khoirine is $1 \frac{1}{3}$ darics. By the daric, this would give 170 and $175 \cdot 3$; the khoirine is 171 and 185. Looking at the diagrams, pl. i , ii , it is unlikely that the primitive daric should be $\mathbf{1 2 8 . 2 5}$, or the khoirine 170 . Thus the question remaining is whether the Persian unit is derived from $1 \frac{1}{3}$ daric or from the khoirine ; the data are too scanty and diverse for the settlement of this. Other supposed relations of weights may require to be tested, and the original standards are the only source for proving any derivations.

In the table above, the mina of each unit is stated, and the equivalent volume of water in cubic inches. This is required for testing possible connection of weight and water volume, which seems probable in several cases.

CHAPTER XI WEIGHTS FOUND AT GEZER.

51. These weights are all published in Prof. MACALISTER's report, and are here reduced to
grains (in pl. xlix) in order to compare with the Egyptian weights. After the classifying of the previous weights, there is little question about the attribution of these, except that a few of the smallest, of which the fraction is doubtful, are omitted here. There are five periods distinguished in the publication; but as there is no clear line between the first and second they are both marked here as I , including all down to the end of the xviiith dynasty, 1330 B.C. Class 2 comes down to 800 B.C.; class 3 from 800 to 550 ; class 4550 to 100 b.C. The few names that occur on these are not always satisfactory. The beqa 94.3 is very low, but is vouched as such, by the name on it. The peyem 112.2 is also very low, but likewise is named. The khoirine weights marked as such, with the multiple in italics in the list, are all well in their group. A weight with the name necef on it, however, is only of $143 \cdot 2$, obviously a qedet, io grains too light for the lightest necef; probably it was a necef ground down, or made as a qedet, and then marked necef by accident or fraud. The whole question of loss and alteration is unstated, and may easily increase many of these.

The relative numbers in each standard, and each period, are here given, reduced to percentages of the total (230).
$\begin{array}{lrrrr|r}\text { Period } & 1 & 2 & 3 & 4 & \text { all } \\ \hline \text { peyem } & \text { I } & 1 & 3 & 4 & 9 \\ \text { daric } & 3 & - & 3 & 2 & 8 \\ \text { stater } & 1 & 2 & 1 & 2 & 6 \\ \text { qedet } & 5 & 7 & 5 & 13 & 30 \\ \text { necef } & 3 & 2 & 3 & 2 & 10 \\ \text { khoirinē } & 3 & 3 & 4 & 8 & 18 \\ \text { beqa } & 1 & 3 & 2 & 5 & 11 \\ \text { sela } & 1 & 2 & 2 & 3 & 8 \\$\cline { 2 - 6 } \& Each period \& 18 \& 20 \& 23 \& 39\end{array}$) 100$

The qedet greatly preponderate in every period. Next to that the khoirine ; and it is strange how the three least usual units are what might be expected to prove the commonest, the well-known daric, stater or Attic, and sela or Phoenician. Looking at the different periods, the peyem increases in later time, the daric loses ground, the stater is not at all increased by the Greek influence, the qedet gains largely as well as the khoirinē. These changes are instructive as they are not at all what might have been expected. It is as clear here, as it is in Egypt, that all of these units were in use as early as the xviiith dynasty.

The comparison of these with the Egyptian weights has already been stated in the account of each standard.

CHAPTER XII
 THE METAL WEIGHTS.

52. As the purpose of studying the stone weights was the recovery of the original standards, and tracing their changes, it was needful to exclude the metal weights which have almost always undergone alteration. The metal weights, also, are mainly of later period than those of stone. Metal was rarely used for weights before the Greek periad; and after it came into use, stone weights are only a minority, except for large sizes where metal would be expensive. The difference of period is so marked that a few stone weights of late age are included here in the metal group. Metal has usually both lost and gained in weight. The loss is by wear, by solution of compounds, and, especially on bronze weights, by scaling of compounds; the gain is by the oxygen and carbonic acid locked up in the compounds, for nearly half the weight of green carbonate of copper is gain from the air. The uncertainty in estimating the changes, obliterates the value of a weight for precise enquiries; but it generally leaves the weight of some value in coarser grouping, and only in few cases does it render uncertain the attribution of a weight to a standard. In comparing several estimates, made thirty years apart, there was found an average difference of I grain on a total change of $2 \frac{1}{2}$ grains.
53. The considerations in the treatment of metal weights are different from those regarding stone weights. Owing to the late date, there is no question as to original values of standards, all those were long past; nor is there any historical difference to be taken into account, so far as we know. The use of metals in coinage has led to a depreciation of the standard in most cases, quite different from the casual variations before the influence of coinage; different types of one standard came into use, for trade and for coinage, as in the Attic and Roman systems,-stater and uncia. The use of coinage also led to fresh divisions, such as the drachma rather than the stater (Attic) or the shekel (sela); also to fresh subdivisions, as the twelfth of the stater (Attic). The ranges of variation became wider than before; the marked nomisma, or sixth of the uncia, is found from 59.6 to 73 grains, im-
plying a libra from 4300 to 5260 grains. In view of this vagueness and of the balance errors affecting very small weights, we must not hesitate at granting a much wider range to these little weights of the Attic system than is due to the early stater system; the uniform style of little square leaden weights from 57 to 74 for the drachma belong rather to the common Attic system widely in error, than to the daric, peyem, and qedet which occupied those limits in earlier times. Hence all the practical considerations of study in the great trading, coining, cosmopolitan age of the Roman Empire, must be widely different from those which have led us back to the isolated conditions of the origins of local standards.
In this late section there are many weights from Syria and Asia Minor; but as trade was so general in the Graeco-Roman age, it is not unsuitable to take together all the eastern weights. I owe all these Greek weights, and some of the Egyptian examples, to the zeal of my old friend the Rev. Greville Chester, whose collecting tours, down to his death in 1892, were a means of saving a great quantity of antiquities from ignorant destruction and loss.
A class of very small bronze weights here has been kept apart from the other metal weights, for two reasons. First, they are so small that the uncertainties of original balance error, and of corrosion, make it only just possible to class them aright, without any hope of their giving help in defining the standards. Second, they are nearly all from Defenneh, from the early Greek goldsmiths' workshops, and thus dated between 660 and 560 B.C. Their only value, therefore, is in showing what standards were used in the jewellery trade at one place and in one century.
54. In studying metal weights it is necessary to make allowance for the changes which they have undergone. The principles of this, and a table of the allowances needed for various corrosion, I published in Naukratis, I, pp.70-71, in 1886 . All the weights reported here have had changes estimated; and, as most have both gained and lost, the sum of the changes is entered in the list, to show how far the result is uncertain. The estimation of change must always be vague, in fact the only satisfactory material would be entirely uncleaned weights, reduced to a metallic state by chemical means. The main use of examination is to reject from the series such weights as have undergone
large changes. In the diagram of results, none are included which have more than two per cent of total change, and these results may there be fairly trusted to about one per cent.
In the diagram of metal weights, pl. ii, there are short curved lines below the row of marks showing the unit of weight. These lines show the maxima \frown, and the minima \smile of the distribution of the stone weights. The details of references to other sources will be described below, under each standard. In the following notes, numbers with star * are shown on pl. ix frontispiece.
55. Реyem, xliii. A notable group here is of three square weights (pl. xii, 4747, 4751, 4764) with an anchor in relief, the Seleucidan emblem. These must be presumed to belong to one standard. That of 3503 grains, if halved (1751), is near $1816 \cdot$; and the ratio to 4570 is as $3: 4$; the proportion between these is then $3: 6: 8$, on a basis of about 570 to 605 grains. As this is Syrian, we cannot refer the base to 4 qedets, and as the multiples are by 3 , the base cannot be 3 Aeginetan or beqa, as 9 and 18 are very unlikely in that system. This limits these to being 15,30 and 40 peyem, and as that unit is well known in Syria, this is the more probable. The bronze weight bears the name of Papios in relief (pl. xii). The disc of bronze (4773) from Tartus, of 495 grains, with $t z o$ in Phoenician, may refer to tzor small, as being the small division of a unit. The usual heavy weight is 400 peyem, and this weight would be a hundredth of that. There are only two animal weights, calf and frog, of this standard, 4749,* 4775.*
56. Daric, xliii. The best known form for this standard is the Assyrian lion weight. There are here two fine examples of 2610 and 2635 grains, quite uninjured; one lion (4848)* is of the raging Assyrian style, the other (4841)* of the bourgeois Babylonian type (pl. ix). They agree with the high group of the standard (marked L in diagram), while the great lion weights centre on 127.2 (marked here AL) which is the low standard, and none of them reach 130 grains, unfortunately the amount of cleaning is not stated (see Rev. Eg., ii, 174-176). No. 4782 is from Magnesia ad Sipylum; it is credited here to the daric, as there is no evidence of the peyem as far west as Lydia. The same may be said of no. 4783* from Ephesos, with heads of Severus and Caracalla. The small couchant lion, no. 4788,* has a ring on the back, a miniature of the Assyrian lions. The thick disc of lead with a
handle, no. 4789,* has in raised letters cast on it LPM压TOYP. This probably refers to its issue by a Roman governor at Tyre, like no. 5158 issued by a governor at Berytus. The only known family name to agree with these initials is Lucius Pomponius Molo, who was in the mint at Rome in 94 B.C. The weight from Lachish, no. 4799, is a square of sheet lead, stamped at each corner with a die (pl. xii) from the gold stater of Philip II, which gives its period. The large weight no. 4800 , from Ephesos, with a tripod in relief, is of the same group as the other triangular lead weight from Ephesos, no. 4840.
A square bronze weight, xiii, no. 4806, has deeply incised letters on it, $E M \perp$; \perp is known by the khoirinē series to be $=8$, and an eighth of this agrees with the daric. On the other side it bears K , which may mean 20 drachms of the sela. On a brown serpentine weight no. $482 \mathrm{I}, \Pi$ is evidently for $\pi \in v \tau \varepsilon$, five shekels. Another marked weight in the same material has B, referring to the double shekel, no. 4856. A rectangular bronze weight, no. 4849, bears a thunderbolt in relief on the top, and, incused below, a bull of curious disjointed style. By these types it is probably Seleucidan.
The distribution in the diagram, pl. ii, shows a clear gap at the same point as in the stone series, 129 grains. As this is the value of the daric coinage, it seems that the coinage had no influence on a standard value, but the weights continued to be copied from the trade standards. This unit had a wide range in the Greek world, being the regular standard of the earliest coinage of Asia Minor,Cyzicus, Lampsacus, \&c.-as well as of Corinth and early Magna Graecia, before it became modified to suit the Attic system.
57. Stater (Attic) xliii. In this system, the reduction to a unit is here continued on the stater basis, for convenience of comparison with the stone weights. But the actual numeration marked on the weights is nearly always on the drachma, or halfstater basis, and the divisors would be simpler on this drachma value. This was not so originally, as the two marked weights of early times show the stater basis.

The most usual class of this Attic standard are the small square leaden weights, the commonest of all in Greek times. The weights with two and three dots $(4860,4868)$ prove the usual division of the drachma into six obols. Among the animal weights, the "flat bull head" (4925)* of Greek work,
is in front view, and is flat on the back. The " bull head, Amarna" (4939)* is an all-round figure of purely Egyptian work of the xviiith dynasty. The haematite wolf head, or fox head (4938)*, is probably prehistoric Greek. The Asklepios weight (4946)* is a square of sheet lead, bearing an oval stamp in which is a figure of Asklepios. The weight no. 4964 apparently represents a flat seed; it is the only trace of the principle of the seed-weight, so essential in India and China. The distribution diagram, pl. ii, shows that the majority conform to the trade value of the Attic standard, and that the coinage value has had very little effect on the weights; the number agreeing with the coins is only what might be expected as a lower extension, like the upper extension, of the trade value.
58. QEDET, xliv. This is an almost entirely Egyptian standard; at Gezer, about a quarter of the weights agree with it, but it is rare in Syria, and unknown in the Greek series. The metal weights, by their forms, are nearly all distinctly Egyptian. There is only the figure of a dove, no. 5050^{*}, which could be accounted as Greek work. The bull's head from Gurob, no. 5030, is in the round; the flat bull's head, no. 5073^{*}, is of the form usual in foundation deposits. No. 5044, though stated as found in the tomb of Den, is apparently of late date; it has had a handle broken off, and is much battered, so, if really found there, it was probably dropped recently by a native. In the distribution diagram, pl. ii, it appears that the most usual values are 142-144 and 149-151. There is no prominence of the low 140 grain value. For other notes on these, see the qedet stone series, sect. 33.
59. NeCEF, xlv. The first example (5096) is placed here, instead of with the qedet, as it resembles no. 5113 which is clearly the necef. In the higher values there are many animal weights; altogether, 23 per cent are animal weights, while there are only 4 per cent of these in the qedets. The distribution is much scattered, and shows no relation to the ranges of stone weights. This was the Greek system in eastern Asia Minor, and probably native to North Syria and the Hittites. It was also one of the systems later called "Alexandrian." The iron weight (5116) is the only one of that metal here.
60. Khoirīne, xlv. There is sufficient gap between the last group and this to distinguish the beginning; and at the end is a marked weight (5152) certainly of this standard. Possibly some of the lighter beqa (or Aeginetan) weights which
follow, really belong here. The proportion of animal weights is as in the necef. The distribution of these has no relation to the grouping of the stone weights. This system was well-known in Asia Minor, used for the silver coinage of Phocaea, and passed on to Massilia.
61. BEQA (Aeginetan), xlv. One of the lowest examples of this (5154)* is so assigned because of the form of a tortoise, the type of Aegina. Another tortoise weight is no. 5186*. In Greek times the drachma, or half-stater, was the unit, and hence all these numbers of multiples should be doubled, which renders them much smoother, 3 and 5 and 150, in place of $1 \frac{1}{2}$ and $2 \frac{1}{2}$ and 75, also $\frac{1}{4}$ and $\frac{3}{8}$ in place of $\frac{1}{8}$ and $\frac{3}{16}$. The double drachma is kept here in order to compare it with the beqa or nub weights of earlier ages. No. 5158 records the name of Licinius Cnaeus, perhaps born in the joint censorship of L. Licinius and Cnaeus Domitius, 92 b.c. He appears to have been governor of Berytus. A group of weights with a head of a ram or lamb, probably belong together; they are nos. $5163^{*}, 5169^{*}, 5195^{*}$, of 3,5 and $1 \frac{1}{2}$ drachms, all cast in open moulds. These are probably of Phokis, as the ram's head is on the coins of Delphi with the Aeginetan standard. The heart shape, no. 5178^{*}, is of Egyptian style. The little discs of calcite from Ephesos ($5 \mathrm{I} 80,5188$, 5193) are of $\frac{1}{4}$ and $\frac{3}{8}$ of a drachma. An unusual type here is the square with concave sides, type 614; three here, nos. $5162,5177,5185$, are of 10 obols, 5 and 150 drachms, which seem peculiar to this system.

The distribution of these weights shows no relation to that of the earlier beqa standard; but they closely conform to the usual range of the coinage, and the variation of the Aeginetan trade standard of Greek times.
62. Sela (Phoenician), xlvi. The most distinct series of this unit is that of the thin weights of cast lead, with a raised border and a letter-numeral, belonging to Berytus and Marathus, type 612. The similarity of the eight listed here (xiii, 5205-5208, $5228,5237,5273,5275$) is the ground for placing so low a unit as 197 grains (no. 5205) to this system. There is however as low a variant in a series of disc weights from Carthage (197 to 234 grains) which must belong to this standard. A large example is the pan-shaped weight with ribbed inside, no. 5214, which gives a mina of 60 sela; such a multiple is supported by xiii, nos. 5218 , which is marked LIII, librae tria, showing a libra in Roman
times of 20 sela, and the use of a weight of 60 sela. Two Egyptian examples from Memphis are curious, roughly carved as a lion and ram, xvi 5215,5230 . No. 523 , xiii, bears sigma upon it, probably for siglos. The numeral 5 on no. 5243 is doubtless placed for a fifth of the sela. Among the animal weights that of the calf, no. 525^{*}, is unusual for the size and good work; it is a cire perdue casting, filled up with lead. The two weights from Cyprus are alike, nos. 5256, 5257, but clearly not double one of the other: the only relation is 25 to 12 , and this would be 25 and 12 drachmae of the sela. In these, and many other instances, the multiples show that the drachm of $\frac{1}{4}$ sela was the unit regarded rather than the whole sela. A fine series was found at Tell Amarna (xiii, 5276-528I), dated to Roman times by a variegated glass whorl found with it. These six weights of lead are in good condition, not deeply corroded, and without any loss, each plainly marked. The details of them are given at the end of the list of the sela (xlvi), and the mean value entered in the list (5267). The mean variation and balance error is under five grains. In the diagram, the mean is a thick stroke, with a bracket over it showing the extent of variation. It is an unusually high value of the sela, suggesting that it may have been modified to agree with the weight of the denarius some time in the second century. In the diagram, the distribution centres on the group of earlier weights, and the rather lower value of the Ptolemaic coinage does not seem to have lowered the average.
63. Ungia, xlvi. This Roman system does not appear in the earlier stone weights; and only a few stone ones are here, all of the regular Roman form. The standard of the libra was probably derived from the Aeginetan system, the descendant of the beqa; but being divided in Italy into 12 unciae, and these into six sextulae or nomismata ($=$ solidus coin), and these again into 24 siliquae, this duodecimal series entirely broke the resemblance to the Aeginetan system.
The first three and last of the list stand so far apart from any other examples, that they are clearly fraudulent. The rest form so connected a series, that they must be granted to vary to the outrageous amount of a tenth of the whole; being marked weights there is no denying this irregularity. The usual marks on them are \wedge for libra; 「o for oungia, uncia; N for nomisma or solidus; with the usual letter-numerals. The marks are often placed in a
wreath with a cross between them, sometimes in an archway supported by twisted pillars (xiv, xv, 5323, 5378). The peculiar types are noticed, in order. The reason for the abundance of these weights was the fixing of the solidus under Diocletian at 72 to the libra, or 6 to the uncia, at which it was long maintained; also the custom of weighing all gold in payments, which kept up its weight for coinage, but required weights on all occasions of purchase. No. 5293, xiv, has the khirho monogram inlaid with silver, which is very rare on weights; there are no others here, or in the British Museum. The weights which have been cleaned are inserted here at their present amount, and they have probably lost but little; $+\boldsymbol{x}$ is placed in the column of original weight to show that they are not complete. There are six official weights in the list, which should be noted together. No. 5296, xiv, xvi has on one side three busts with the letters KHT, evidently intended for Konstantinos IV (Pogonatos) with his brothers Heraklios and Tiberios, and therefore between 668 and 674 A.D. On the reverse is a female figure holding a balance. No. 5297 is a square weight with the head of Honorius inscribed D.N. HONORIUS and on the reverse a female figure holding a balance and exagivm SoLid. This is too much worn to prove the original amount, so it is entered at the weight stated by Cohen. No. 5^{320} is inscribed $\triangle I K E O N$, as being an exact standard. No. 5341 has two busts in relief, stamped in thin sheet copper, and then soldered on to a square weight with flat faces. 5332 A is of the same type, but solid. No. 5386 has three busts incised upon it, and is probably of the period 668-674 A.D. like no. 5296; the weight shows it to be for the double triens, or $\frac{2}{3}$ of the solidus.

Nos. $5300,5369,5371$, were all together in a box for scales, but have no other connection. No. 5301 is a pan weight intended to hold a nest of fractions, such as was usual a couple of centuries ago. 5303 is marked sigma for the semi uncia. $5326,5346,5393$ are marked IB for 12 scripulae. 5312 is marked H for 8 siliquae. 5304, 5349 are marked IB for 12 siliquae. 539 m marked IB is probably an error for NB, two nomismata. Unusual multiples are 5315 , 4 nomismata; 5290, 5 nomismata; and 5384 marked 4 , showing a division of an eighth of the uncia, probably the silver coin of Diocletian. No. $5^{3} 17$ is of alabaster, with IB on one side and on the other T, with small letters around it, apparently ПヘАY^O, or AГOPA; the form is clearly of Roman age. What
times of 20 sela, and the use of a weight of 60 sela. Two Egyptian examples from Memphis are curious, roughly carved as a lion and ram, xvi 5215,5230 . No. 523 , xiii, bears sigma upon it, probably for siglos. The numeral 5 on no. 5243 is doubtless placed for a fifth of the sela. Among the animal weights that of the calf, no. 525^{*}, is unusual for the size and good work; it is a cire perdue casting, filled up with lead. The two weights from Cyprus are alike, nos. 5256, 5257, but clearly not double one of the other: the only relation is 25 to 12 , and this would be 25 and 12 drachmae of the sela. In these, and many other instances, the multiples show that the drachm of $\frac{1}{4}$ sela was the unit regarded rather than the whole sela. A fine series was found at Tell Amarna (xiii, 5276-528I), dated to Roman times by a variegated glass whorl found with it. These six weights of lead are in good condition, not deeply corroded, and without any loss, each plainly marked. The details of them are given at the end of the list of the sela (xlvi), and the mean value entered in the list (5267). The mean variation and balance error is under five grains. In the diagram, the mean is a thick stroke, with a bracket over it showing the extent of variation. It is an unusually high value of the sela, suggesting that it may have been modified to agree with the weight of the denarius some time in the second century. In the diagram, the distribution centres on the group of earlier weights, and the rather lower value of the Ptolemaic coinage does not seem to have lowered the average.
63. Ungia, xlvi. This Roman system does not appear in the earlier stone weights; and only a few stone ones are here, all of the regular Roman form. The standard of the libra was probably derived from the Aeginetan system, the descendant of the beqa; but being divided in Italy into 12 unciae, and these into six sextulae or nomismata ($=$ solidus coin), and these again into 24 siliquae, this duodecimal series entirely broke the resemblance to the Aeginetan system.
The first three and last of the list stand so far apart from any other examples, that they are clearly fraudulent. The rest form so connected a series, that they must be granted to vary to the outrageous amount of a tenth of the whole; being marked weights there is no denying this irregularity. The usual marks on them are \wedge for libra; 「o for oungia, uncia; N for nomisma or solidus; with the usual letter-numerals. The marks are often placed in a
wreath with a cross between them, sometimes in an archway supported by twisted pillars (xiv, xv, 5323, 5378). The peculiar types are noticed, in order. The reason for the abundance of these weights was the fixing of the solidus under Diocletian at 72 to the libra, or 6 to the uncia, at which it was long maintained; also the custom of weighing all gold in payments, which kept up its weight for coinage, but required weights on all occasions of purchase. No. 5293, xiv, has the khirho monogram inlaid with silver, which is very rare on weights; there are no others here, or in the British Museum. The weights which have been cleaned are inserted here at their present amount, and they have probably lost but little; $+\boldsymbol{x}$ is placed in the column of original weight to show that they are not complete. There are six official weights in the list, which should be noted together. No. 5296, xiv, xvi has on one side three busts with the letters KHT, evidently intended for Konstantinos IV (Pogonatos) with his brothers Heraklios and Tiberios, and therefore between 668 and 674 A.D. On the reverse is a female figure holding a balance. No. 5297 is a square weight with the head of Honorius inscribed D.N. HONORIUS and on the reverse a female figure holding a balance and exagivm SoLid. This is too much worn to prove the original amount, so it is entered at the weight stated by Cohen. No. 5^{320} is inscribed $\triangle I K E O N$, as being an exact standard. No. 5341 has two busts in relief, stamped in thin sheet copper, and then soldered on to a square weight with flat faces. 5332 A is of the same type, but solid. No. 5386 has three busts incised upon it, and is probably of the period 668-674 A.D. like no. 5296; the weight shows it to be for the double triens, or $\frac{2}{3}$ of the solidus.

Nos. $5300,5369,5371$, were all together in a box for scales, but have no other connection. No. 5301 is a pan weight intended to hold a nest of fractions, such as was usual a couple of centuries ago. 5303 is marked sigma for the semi uncia. $5326,5346,5393$ are marked IB for 12 scripulae. 5312 is marked H for 8 siliquae. 5304, 5349 are marked IB for 12 siliquae. 539 m marked IB is probably an error for NB, two nomismata. Unusual multiples are 5315 , 4 nomismata; 5290, 5 nomismata; and 5384 marked 4 , showing a division of an eighth of the uncia, probably the silver coin of Diocletian. No. $5^{3} 17$ is of alabaster, with IB on one side and on the other T, with small letters around it, apparently ПヘАY^O, or AГOPA; the form is clearly of Roman age. What

It shows how little the Egyptian demanded his old standard then. Probably the actual workmen were Greeks and Syrians. The day of the Persian had not yet come.

CHAPTER XIII
 THE INDO-CHINESE-ETRUSCAN SYSTEM.

66. The three sources to be considered here are:The Indian seed system in Marsden, Numismata Orientalia, edit. Edw. Thomas, 1874 ; indicated here as T .

The Chinese system in Decourdemanche, Traité des Monnaies, Mesures et Poids de l'Inde et de la Chine, Paris 1913; here D.

The Etruscan weights in Monumenti Antichi, I, 321, pl. x; here E.

The Indian system is based upon the weights of seeds, especially the wild Licorice, or rati, as the nominal standard. A higher weight was the cultivated bean, or masha, which appears to be the Phaseolus vulgaris of southern India, but as a cultivated plant its uniformity in different ages is unlikely. Other seeds whose weights are recorded as standards are rice, barley, common beans, and black beans. All of these are stated not only in simple relation to the rati, but in such numbers that they are all in simple relation to the larger unit of about 580 grains, called Catamana in the silver standard, and Pala or Nishka in the gold standard. It is therefore the simplest course to regard each weight-seed as a source for fixing the original value of the Pala (T, 14, 65). The following are averages of large quantities:-

	Grains	\times	Pala
Small beans	3.582	160	$573 \cdot \mathrm{I}$
Rice	0.3585	1600	573.6
Barley, husked	0.5978	960	573.9
Common beans	$9 \cdot 10$	64	582.4
Black beans	14.60	40	$584 \cdot 0$
Rati	1.871	320	598.7

For the Rati, this is the average of the results of six observers, omitting the earliest as obviously wrong. The six agree, with an average difference of 0.05 on 187 , or $\frac{1}{40}$; the mean having a probable error of 0.02 , i.e., it is as likely to be between 1.85 and I .89 as beyond those limits. This gives 599 ± 6 as the value of the pala. The Rati is therefore the outlying member of the group; yet, as the best
known, we must give it at least equal weight with the others. The average will be 581 grains, mean difference 7, probable error 3 grains. The Bactrian coinage unfortunately does not help the enquiry, as the Attic was the standard during the fine period; when the native standard came into use the regulation was imperfect, and degradation set in. Hence the silver coin results vary far more than the above values from different kinds of grain: The early examples would give a unit between 577 and 612 grains, and they quickly diminish to a unit of 500 grains and less.

The safest conclusion therefore seems to place the Indian standard pala at

$$
58 \mathrm{I} \pm 3 \text { grains }
$$

or as likely to be between 578 and 584 as beyond those limits.
67. On the Chinese weights M. Decourdemanche quotes ($D, 159$) values of the tael from a work Notions techniques by P. Hoang (Shanghai), which are as follows:-

Su-chow	$565 \cdot 0$
Amoy	$572 \cdot 0$
Wen-chow	$573 \cdot 3$
By che, cubic measure	$575 \cdot 6$
Official	$575 \cdot 9$
Fine set, University College	$579 \cdot 78$
Burgess's value	$579 \cdot 84$
Customs	$586 \cdot 5$

The official tael is probably the most recognized, 576 grains; the customs office would take the highest value possible, as silver only is received there; the lower values are probably due to the usual loss of standards used for payment. The set of weights at University College are so concordant (see sect. 97) that they are accurate copies of some standard, and they agree with Burgess, who had good official sources.

This tael is $\times 16$ for the kin or catty of 9216 grains, which is decimally multiplied as the teu of 92,160 , and $h u$ of 921,600 grains. This last is the heavy talent of the Babylonian standard; the connection seems likely enough, and we may accept it without at all subscribing to the maze of theoretical connections of various standards with coins, which form the substance of the above work. The result of this connection would be that the tael was $=4 \frac{1}{2}$ shekels. The values of the shekel, and the equivalent tael, are traced in Egypt as follows:-

	Shekel	\therefore tael
Early dynasties, two standards	$127.5,13 \mathrm{I} \cdot 5$	574,592
Fused in xviiith dynasty, mean	129.0	$580 \cdot 5$
Nebuchadrezzar's copy of		
\quad Dungi's standard	126.0	567.0
Daric, Persian standard	129.2	$58 \mathrm{I} \cdot 4$
Spartan duck weight	128.2	577.0

The history of the shekel (and with resulting values for the tael) seems then to be,-two early standards 127.5 (574) and 13 1.5 (592); their fusion by about 1500 B.C. as 129 (580); and the continuance at about this value into Persian and Greek times.
68. On the Etruscan side, there is published a series of 15 marked and 2 unmarked weights of one standard, and 8 other weights of different standards. As these have not been discussed, they are given here in detail. They are all from Marzobotto near Bologna, and therefore thoroughly in the Etruscan region. The weights are stated in grammes, and are quoted thus here to show how far rough the weighing has been; it should be repeated in a scientific manner. Of the main system, II weights have marks showing a unit of about 570 grains or 5700 (37 or 370 grammes), and 4 are of other multiples of that unit. Here they are all reduced to show a standard of about 37 grammes. The multiple signs are $\mathrm{I}=\mathrm{I},+=10,+=20, V=50, *=100$.

Weight grammes	Mark	Multiple	Unit grammes
3500	100	100	35.0
3600	10	100	36.0
3650	10	100	36.5
1835	5	50	36.7
3700	10	100	37.0
3700	-	100	37.0
745	2	20	37.2
560	-	15	37.3
1880	5	50	37.6
26300	70	700	37.6
37800	500	1000	37.8
114	1	3	38.0
3800	100	100	38.0
305	10	8	38.1
3810	$100 ?$	100	38.1
115	1	3	38.3
38300	100	1000	38.3

The first is so different to the others that there is probably some special disturbance of wear, damage, or fraud about it. With it the average is 37.3 ± 0.15, without it $37.5 \pm 0 \cdot \mathrm{x}$; the latter we accept here. It gives for the unit

$$
578.7 \pm 1 \cdot 7 \text { grains. }
$$

69. We now compare these results together. The unit from the
Babylonian talent, yielding 574
and 587 , uniting in $\ldots \ldots$ grains 580
Indian seedweights \quad 58I ± 3
Chinese modern weights ($565 .-586$) $\quad \pi \quad 576 \pm 2$
" by Burgess, and a fine set $\quad n \quad 579.8$
Etruscan $\quad 579 \pm 2$
These agree together within the half per cent of known probable error in each country. The comparison of modern Chinese weights with earlier weights is allowable, considering the close continuity of Chinese civilisation.

If, then, we allow of a presumable connection of these amounts, what historical view must be taken of their descent? First, we know that there was a widely spread system (which we need not detail here) covering Babylonia, Assyria, Persia, Syria, and extending to Egypt as far back as the period of the Old Kingdom. The talent of this system was uniformly divided by 60×60; and this covers every region south of the Caspian and Caucasus.

Next, we find this talent differently divided, by $10 \times 10 \times 16$; and this extends over early India and China.

Then we find the suggestion that the latter system was carried into Etruria. This could not be by way of Asia Minor or the Mediterranean, because, if so, the Assyro-Persian division of the talent would prevail. The only road for it must have been north of the Caspian and the Euxine, through Turkestan. Such then is the route which this fact indicates for the Etruscan migration,-Turkestan, the Kirghiz, south Russia, Hungary, Carinthia, the Tyrol, and so to Etruria. This would accord well with the style of the bronze buckets of Carinthia, and with Isaac Taylor's Mongolian affinities of the Etruscan numerals; coming from the Indian border, there would be no difficulty in a large proportion of Aryan influence in the language. If the Etruscans entered Italy about 900 B.C. their movement from Russia upon the Balkan people was the precipitating cause of the Dorian invasion of Greece iroo b.c. The Dorians in Greece are an earlier stage of the same pressure from the east which brought the Etruscans to Italy. There now enters into possible consideration the strange similarity of types and ideas in the Etruscan and the early Japanese pottery. If the Etruscans started in contact with Indo-Chinese civilisation, the movement of pottery types eastward would not be further than that of the weight
standard westward. It is now an open question of study how far a similarity can be traced between early Chinese and Etruscan ideas.

CHAPTER XIV
 STEELYARDS. PL. XVI.

70. The steelyard was unknown in Egypt or Greece until the Roman age. Its source is Italic, by the evidence of examples; this accords with the statement of Isidore of Seville that it originated in Campania. It certainly was not primitive, as the balance was the legal emblem of sale. To the present time, it is the characteristic machine of Italy, except at Venice where the balance comes in from Oriental trade. In Egypt now the balance is universal in native hands, and the steelyard is only found in use under Italian influence. In the Middle Ages, however, the steelyard was used by Arabs, and then are two very large examples in the present collection (sect. 76).

The steelyards found in Egypt are always incomplete, the counterpoise being lost. In most cases the chains and hooks, or pan, are also lost or damaged. Hence no direct observation can be made on their ancient standard. This can nevertheless be recovered indirectly.

The regular form in Roman times was a steelyard with a groove at the end, in which a saddle rested, and from this hung the hooks or pan. Thus the steelyard could be revolved with any face of the beam upward, while the groove turned beneath the saddle. A suspensor was provided on each of two or three faces of the beam, at different distances from the pan; thus varying leverages were obtained, and one face would weigh from, say, o to 8 lbs ., the next from 7 to 25 lbs., the next from 25 to 70 lbs . At the present time usually only two edges are used, and the pan hangs from a stirrup hingeing on the beam, and turning to either edge.
There seems to have been very little attention given to the right form of the parts. On the smaller steelyards there is a fixed ring for the suspensor, and this is placed parallel to the beam, so that a large error would occur by slightly different positions of the hook; especially in heavy amounts, where the length between suspension and pan is only a quarter of an inch. Sometimes the fixed rings are diagonal, in no case are they across the beam as they should be. The divisions of the beam are
often irregular. This may probably be due to errors in the weights by which the beam was graduated. No doubt they were all made empirically; a convenient pattern was found by trial and error, to give suitable scales, and this was copied again and again; the graduation was put on by placing weights in the pan, and these were probably irregular by four or five per cent, like the Roman weights already described. In no case can we expect to find results of value as to the exact amount of the standard; but assigning the steelyards to their respective standards is of use, as showing what standards prevailed at that age.
71. The divisions of the beam are of two classes; lines, with more or less indication of their meaning, and letter-numerals, which vaguely indicate the place without lines. The lines are often marked with only a dot on each side for the tens, and three dots on one side for the fives, abbreviated from the letter-numeral E. Where Roman influence was strong, the fives and tens are marked V and X without much more, though usually $X X$ is marked and N is put for 50 , borrowed from the letternumeral. On some small beams the third side starts a higher multiple, 50 or 60 times that of the other sides. The first step is carefully to examine the scales, usually with a magnifier, and list all the marks. Observe how the second scale joins the first; sometimes a gap, sometimes an overlap, of a pound or two, the marks on the second scale proving the relation. Often the second scale will run up to roo and then go on with tens, without repeating the 100 mark. If the third scale is lettered in multiples of the others, as 50 or 60 times as much, then it begins early in the alphabet, as Δ, $\boldsymbol{\epsilon}, \mathbf{C}, \mathbf{Z}, \& c$.; what its relation to the other scales may be, is proved as shown further on. The next step is to measure each scale, and find the mean scale in inches, avoiding the discrepancies. There are three ways of reaching the mean scale; the most practical for this case is as follows. Supposing there are 8 divisions visible,-measure from I to 8 , from 2 to 7 , from 3 to 6 , from 4 to 5 , add these four together, and divide by the number of units $7+5+3+1$. It is obvious that any one of these pairs might be shifted among the others without in the least affecting the mean. Hence this set of measurements gives all that is attainable. This mean scale is useful in reducing measures in inches to mean-scale values in the following processes. As the suspensor was always intended to be held up
by the right hand, the beam projects to the left, the direction of reading is retrograde, and often the letter-forms are retrograde.
72. To follow the method of examining a steelyard we will take the actual case of the Psykharido steelyard here, no. 2; the critical points of this on the three scales of different sides are here drawn full size (top pl. xvii), in three lines one below another. This is not a facsimile but a reasoned drawing, giving full numbering, and continuing the scales backward into minus quantities for the sake of study. All readings must be stated in terms of the scale on which they are read; for accuracy, it is usually better to measure actually in inches, and then reduce to scale values by the mean value of the scale, found as described in sect. 71. Of course the slide rule is necessary for all the proportioning in the subject. On this drawing, the centre of gravity of the beam is at the left; this is found by balancing on a knife edge, and should be pencilled on all sides of the beam. It may be thought that the position of C.G. cannot be used as it depends on the losses of chains, hooks, suspensors, and portions of the beam; but all these will also affect the weight, and thus the theoretical independence of all accessories is preserved. As the C.G. is a long way from the other critical points, slight errors are not magnified, and it is sufficient to read its amount on each actual scale, without referring to a mean scale. Of course any suspensors must hang free, or be placed exactly square with the beam, when balancing it. The suspensory points are here marked with a thick line, S, T, U on different sides. The saddle, for the hooks to carry the object, is at the right hand. For reference below, the lengths from C.G. to S, T, U are lettered b, c, d; and those from S, T, U to the saddle are lettered h, j, k. These lengths, as stated above, must be in terms of the scale in question. Let the weight of the beam be called G, grains or grammes. Regard that as a load on the beam at C.G. and the beam as without weight elsewhere; suppose the counterpoise at point of suspension, and inactive. Then

$$
\begin{array}{rl}
h: b:: G:(s a d d l e, ~ h o o k s) ~ a n d ~ & S \\
\text { alsits } \\
j: c & :: G:(\text { saddle, hooks) and } T \text { units } \\
\therefore \frac{b}{h} G & =\text { (saddle, hooks) and } S \text { units } \\
\frac{c}{j} G & =\text { (saddle, hooks) and } T \text { units }
\end{array}
$$

$$
\therefore\left(\frac{b}{h}-\frac{c}{j}\right) \mathrm{G}=\mathrm{S}-\mathrm{T} \text { units. }
$$

(Saddle, hooks) may be any constant, modified by mutilations at either end. If beam is level when counterpoise is at S, then moving the poise the distance h away from the saddle will balance a weight equal to it on the saddle; that is, the counterpoise is always h units in weight. Therefore h, j, k are all an equal number of units; or the distance from suspensor to saddle reads the same on its own scale, whichever side is measured. If this is accurately so, then the formula can be simplified $\frac{b-c}{h(S-T)} G=$ unit of weight. It will be seen that the insoluble cases are where the readings $b=c$ within the amount of errors of work; any near equivalence of b and c, therefore, cannot be dealt with. Further, if the saddle end of the beam is lost, the position can be recovered, by continuing the scales to the right, and finding the place where two scales show equal readings from their suspensors.

Thus a fragment of a beam, which has two scales and two suspensors remaining, suffices for the recovery of the unit.
73. The theory being settled, the actual example will be worked. The first step, after weighing (5892 grains here), and marking C.G., is to measure the mean value of each scale, as described in sect. 71. Then take the distances h, j, k in inches, and reduce them to mean scale values. These last should be all the same numbers, and any differences between them show errors in making. Where one scale is marked with multiples of another scale, as ounces on one and pounds on another, then the same proportion will exist in the numbers of h, j, k. All this should be checked by taking the distances with dividers and reading direct on the beam scale. The actual distances in this case (see no. 2, pl. xv) are in scale values $h 3.63, j 3.50$, $k 3.41$. The scale readings are $\mathrm{S}=+12, \mathrm{~T}=+2.08$, $\mathrm{U}=+8.7$; the C.G. is at $3.92,11 \cdot 16$, and 35.3 on respective scales. Hence $b=3.80, c=9.08, d=26.6$. Therefore

$$
\frac{\frac{b}{h}-\frac{c}{j}}{S-T} G=\frac{\frac{3.80}{3.63}-\frac{9.08}{3.50}}{-1.96} 5892=\text { unit }
$$

Thus the unit shown by the 1 st and 2 nd scales is 4940 grains
similarly by the 1 st and 3rd scales 4710 grains similarly by the 2nd and 3rd scales 4530 n
To show on what actual quantities such differences as these depend, suppose that k is 3.25 in place of 3.4 I , a change of 0.036 inch due to uncertainties in the exact place of the suspensor, owing to long extension of the mean scale used. Then the values of the unit would be 4940, 4920, 4920. It is clear that even in a favourable example a greater accuracy than 5 per cent in the result is not to be expected. Only a thirtieth of an inch uncertainty in taking the scale value of U , modifying d and k, makes 5 and 8 per cent of difference in the unit deduced.
74. By similar reckoning on each of the steelyards, the values for the unit in grains are as follow:-

I		S-T	S-U	T-U
I	Paulos	4440	4580	4440
2	Psykharido	4940	4710	4530
3		5240	4340	5520
4	Broken saddle	5200		
5	Smallest	5050		
6		464	435	454

These are evidently on the basis of the Roman libra and uncia. Also no. 7 (which cannot be reckoned owing to zeros being near the suspensors) shows 12 ths of the unit, pointing to the libra and uncia, and works concordantly on this basis.
Another unit is found on other beams, as follows:-

		S-T	s-u	T-U	
8		2370	2710	2200	? 2 deben
9	Talit	7340			5 deben
10	F	2925	3400	3030	2 deben
11	Harpo	142.0	$140 \cdot 4$	$140 \cdot 0$	qedet \& 5 deben
12		1340	3720?		$\times 60$
3		II	300	106	2 qedet?

Some of these seem to belong to the Egyptian qedet and deben system. No. in is best given as 142, the other values depend on assuming an error in graduation on the U scale. No. 12 might rather be on the daric system, by the multiple being 60 . No. 13 is very uncertain, but suggests the double qedet, by 300 grains. It should be noted that, in varying results, if only two agree they are in error, because an error in one scale will vitiate two results; the one result which differs from a similar pair is more likely to be correct.

There are, beside these, three others ($14,15,16$) whose scale zeros are so close to the suspensors that no result can be safely reached.
75. The work and condition of the steelyards are as follows:-
r. Name of Paulos. Heavy, fine work. Saddle, 2 chains and hooks, and 3 suspensor hooks, all quite perfect; with clean green patina. Pl. xvi.
2. Name of Psykharido, and other letters. Rather rough work, but solid and fairly accurate. Good state. No attachments.
3. Carelessly divided. Worn. No suspensors. Saddle; chains broken.
4. Beam broken through middle suspension. Erratic divisions. The lost dimensions are restored by continuance of the scales, to find the point of equal values on S and T scales; such restorations are in ellipses in the table, pl. xv.
5. The smallest beam. Moderately good work. No suspensors; 1 eye left, and two broken. Beam broken.
6. Roughly divided; signs vague. Suspensors lost. Saddle; chains broken.
7. Rough work, poor divisions. One suspensor, half eye of another, third eye lost. S loop for saddle. The zeros are too close to the suspensors to give a result; but units being divided in 12 ths are probably librae with unciae. By trial, this unit works truly. All the above are for the Roman standard; the following are probably of Egyptian standard.
8. Tip of beam lost. Coarsely, but fairly well divided. One suspensor, and one detached. Green has been cleaned to bare yellow metal. Well preserved.
9. From Talit in the Fayum. Of rhombic section, with only two scales. Purely Roman in style. Suspensors and bearing-pins lost. No attachments.
10. Rough, careless work. Black patina. Good condition. One suspensor. No saddle.
11. Name of Harpo(-krates?). Round beam. Dot divisions, with letter-numerals between. Parts of two suspensors and counterpoise loop. Ring of U scale half gone.
12. Fairly good work. One suspensor, eyes of two others broken.
13. Average work. Only letters marked, and no real divisions. Two suspensors, one eye lost, beam broken. Knob beyond the saddle lost.
The following from bad division, and having zeros near suspensors, are so erratic that the standard cannot be fixed.
14. Well made. Black patina. Saddle; chains and hooks broken.
15. Fair work. Only letters, and no real divisions. No suspensors. Two eyes and one broken. Saddle. Unit in ro's and 6o's, so probably daric.
16. Name of Herōdou. Stoutest work, lettering late Ptolemaic? three eyes broken, one whole; saddle. Unit divided in 8ths; perhaps sela.
The system of the marks (pl. xvii, lower part) is usually the Syro-Greek system, which is common on coins and monuments. The fives between tens are marked E alone. Numbers over $100(P)$ are only marked in tens, as N for 50 or 150 . The Roman V and X system is also used, but with only one X for tens above twenty (nos. 5, 7, 10, 12).
76. Two large steelyards of Arabic times were bought in Cairo, from the sale of waqf property. These are both of steel, inlaid with silver numerals, and the lesser one with inscriptions. In the drawings, pls. xviii, xix, the slings and hooks for suspension, and the saddles for hanging the scale pan, are omitted for clearness.

The length of the larger steelyard is $93 \frac{1}{2}$ inches in all, of which 16 inches is occupied by the butt end with the suspensors. The support for the scale pan so far above the axis is very badly designed, as the whole accuracy therefore depends on the beam being exactly level, and from that position it tends to fall either way, as it is very unstable. Each of the four sides of the beam is divided; the sides one above the other belong to one way of suspension, i.e. the beam was read from the side, and not looking down from above. The counterpoise being complete with its hook, the values can be directly ascertained. Reading on face A, the distance of the support A from the fulcrum, 6.30 inches: the counterpoise of 140,320 grains in weight :: the unit of division, $3 \cdot 186$ inches: the unit of weight 71,000 grains, or 10.14 lbs . Face B will be noticed later. On reversing the beam, face C belongs to the support C. Here 2.58 inches : $140,320 \mathrm{grs}$: :: unit of division $\mathbf{I} 275$ inches : $69,300 \mathrm{grs}$. unit. On face $\mathrm{D}_{\mathrm{I}} .30$ inches: $140,320 \mathrm{grs}$. : : unit of division 0.643 inches : 69,400 grs. Thus the different faces give a unit of

A $71,000 \mathrm{grs} .8 .5$ to 32.0 units $=320 \mathrm{lbs}$. C 69,300 31.5 to $90.0=900$ D 69,400 80.0 to $\mathbf{1 8 2 . 0}=1820$ $\frac{1}{2}$ counterpoise 70,160 .

It is obvious that the counterpoise is a double unit, which simplifies the divisions, as they are then based on half the distance of fulcrum to support.

The poise itself is of course the best defined, and is clearly a tenth of the Arab kantar, being 10.02 lbs., and the kantar at present is 10 I .3 I lbs. The irregularity shown by different faces is merely due to the difficulty of division on so unstable a leverage. The numeration is on two systems, one for tens, the other for hundreds; the tens are proved by lying between the hundreds; the hundreds are proved by the thousand being marked alf "thousand," in the series on face D. The numerals are set out on pl. xix.

We turn now to face B, which is on a different unit. Dealing with this as before, 6.30 inches: $140,320 \mathrm{grs}$. :: 0.715 ins. : $15,927 \mathrm{grs}$. This unit of 15,927 grains is explained by the lesser steelyard.

The lesser steelyard is 53 inches long, of which II inches is occupied by the butt. Face A is complicated by having two sets of divisions, belonging to supports J and K . The lower set, J, belongs to the support J, and the upper K series to support K. Face B is entirely blank. Reversing the steelyard, face C is complicated by having the two series of divisions for supports L and M; for the sake of clearness here, there is copied off above the beam the L series separate from the M series. There are also a few marks of a third series which appear to be only mistakes for the two series. Face D has the series belonging to support N . The rule which serves to prove which support and scale belong together, is that the distance from the fulcrum to any support is always the same number of units of its own scale, whatever the position may be. This is the simplest way to state the matter, when there are several scales to compare. Here we find the fulcrum to the support at

J	K	L	M	N
0.693	0.675	0.655	0.660	0.63 I unit.

N is so uncertain, (by its being so near the fulcrum and so high above it,) that it is best to take the mean of the others, which is 0.670 . The unit of weight multiplied by this 0.670 is equal to the counterpoise. We know the counterpoise (less its hook) to be $104,800 \mathrm{grs}$. The theoretical value, deduced from the beam and divisions only, is $107,550 \mathrm{grs}$. The hook might be assumed as an iron rod $\frac{3}{8}$ inch thick and 9 inches long, about 2000 grs., so that the whole counterpoise would be about r07,000, or possibly rather more. Hence the unit of weight of all the series of divisions is $107,000 \div 0.67=159,700 \mathrm{grs}$; as both the factors
are liable to be greater, the result of differences would not much affect this, but it might possibly be 2000 or 3000 grs. different. Practical trials of the balance gave 159,800 and 160,700 grains as the unit.
The inscriptions, though partly worn away, afford some help. On face C, line L begins with the name çir, usually rendered seer in commerce. Forty seers make one maund; both these terms are vague general names, as shekel is. The weight of this seer is 2.28 lbs ., so the maund would be 91.2 lbs . Among the various examples, the maund of Basra is 90.25 lbs ., and we may assume that this steelyard was used for trade from the Persian gulf. On the face D is the guarantee rotl waf khazany, "exact rotl of the Treasury." This identification of the unit explains the meaning of face B on the larger steelyard; the unit there we found to be $15,927 \mathrm{grs}$., and the seer khazany is 15.970 grs . The close similarity does not mean much, as either might be one or two per cent different, but certainly they are intended for the same unit.
The source of the numerals here used is the alphabetic system of classical times, in a corrupt form of Greek minuscule. Such was used by the Copts, as Mr. Knobel has pointed out (see L. Stern, Koptische Grammatik). The 40-60 are also closely like the Gobar figures in the xth century in a Persian M.S., coming from India of the viiith century. The Greek E for five was continued as a subdivision mark from the steelyards of Roman times. The units of weight here are, however, the Egyptian kantar and the Basra seer. Besides the inlayed silver figures there is a punched series of lines for numbers, which have been marked since the silver inlay, as they are accommodated to it. These are obscure; the $40,70,90$ and some hundreds, have a pair of curved lines; a C form is at half of each ten and half of each hundred, and might be degraded from nusf "half." The other lines are so corrupt and variable that it is difficult to trace the system.

CHAPTER XV
 MEASURES OF CAPACITY.

77. Comparatively few measures of capacity have been recognized in Egypt hitherto. Eight vases of stone with the capacity marked in hen
measures are about all that have been acknowledged by Egyptologists. As these capacities are mostly odd numbers, and heavy alabaster vases are not suited for making measurements, it is probable that these markings are only records of contents, and do not imply that the Egyptians used them for guages. Where then are the numerous measures which must have been commonly used among a people so fond of accounts and registers?
A considerable number of pots and vases are found which are obviously likely to be intended for measuring, such as plain cylinders ($\mathbf{x x i}, 77-80$) and conical cups with broad flat brims (xxiii, 201-206). The difficulty really lies in recognising what is or is not a measure. There can be no possible doubt about $\mathrm{xx}, 102$, which is a regular cylinder divided on the inside by bands marking quarters; each quarter is half a hen, and the whole is two hens. From this there is every grade of form, down to purely ornamental alabaster vases (xxii, 832); how far are we to credit them with being measures? When we look at modern usage it seems probable that there are three classes to be distinguished; (A) measures made for the purpose of guaging, (B) jars made for general use, approximately according to measure, like the usual pint and quart jugs which are the commonest vessels now, (C) jars which have been accurately guaged, and marked with contents, to show the amount placed in them, often an irregular quantity. The value of these for fixing standards is very different; class C serves to prove the approximate amount and name; A serves best to fix the exact amount; B is of little use, but should be included in lists, though not used for fixing the standard. Another consideration is that class A must have been filled to the brim, if there is no definite mark below that; whereas B would only be filled as much as was convenient to carry, and there is no certainty what that limit might be. In the present guaging of such vessels we can only fill them all to the brim, and therefore the contents of class B will be recorded in excess.
78. The safest way to begin to handle the subject is to start with forms of class A, which are most probably measures, and if they agree with a definite system, accept that as a framework. Then other vases, the purpose of which is uncertain, or of class B, may be accepted if they fall within the variation already known from class A. Considering that a range of variation of an eighth of
the whole amount exists in one standard of marked weights-the beqa, and a range of a tenth to a thirtieth in other standards, it is probable that a large range will be found in capacity measures. Another point to observe is that pottery measures -rough or glazed-cannot be made exact, owing to variability of shrinkage, and must not be relied on for accuracy. Only measures of metal, not seriously corroded, or of stone, can be accepted as good definitions. All of the vases here named were guaged by the weight of water contained up to the brim.
Several different standards may be expected among capacity measures. From the figures of such measures in the iiird dynasty, there appears to have been generally used then the Egyptian hen and the Syrian saton (Ancient Egypt, 1915, 40). Other measures that may be expected are the Syrian-Hebrew log, and in late times the Persian and Greek standards. As there were eight standards of weight in use, there would probably be also several standards of capacity, due to the many mixtures of surrounding civilisations.
79. The plain cylinder is a form most likely to be made for a measure. It was so made in the iiird dynasty (tomb of Hesy), in Roman times, and down to the present day. A cylinder without a brim, a spout, or a handle, is inconvenient for any purpose beyond merely filling and emptying it in bulk for guaging. There are seven such cylinders here, nos. 5, 10, 18, 30 (vases 77 to 80), and nos. 1, 14, 17 (vases 212, 213, 211); these are all simple multiples of the Syrian standard, 5, 4, 3, 2, 2, 2, and $\frac{1}{20}$. They form, then, a strong basis for this standard. Four of these are of bronze, giving values of $19.9,20.6,21.5$ and 23.6 cubic inches. One of wood is as low as 19.2 inches; but a contraction of 3 per cent across the grain would be quite likely, which would allow this to be $20 \frac{1}{2} \mathrm{c} . \mathrm{i}$. Two of glazed pottery give middle values of 20.9 and 21.3 . The stone cup measure from Edfu, apparently of the age of Khufu, is 20.8 , see Ancient Egypt, 1923, p. 2. This has the triangle q on the brim, suggesting some original form of kotyle. The figures of measures of Hesy, give by the outside sizes 21.2 to 23.6 c.i., and, as the thickness might be about I per cent of the diameter, this would give 20.4 to 22.8 for the contents. From literary sources, the old Syrian system was on 21 c.i., and the Seleucidan 22 c.i. All of these agree as nearly as their uncertainty permits:-

It appears, then, that the earliest measure 20.8 agrees with the larger form of the early beqa; the later measures $2 \mathrm{I} \cdot 4 \mathrm{might}$ connect with either beqa or sela. The connection is passably likely, but yet the variations leave some latitude for making a connection.

Having then a variation of 19.9 to 23.6 cubic inches for the unit, it is reasonable to include various other vessels which give multiples of quantities between those, as in the Catalogue, nos. 1-35. Another class of vessels, which seem obviously measures, are the conical cups with flat brims, pl. xxiii. Most of these are only fragments, and the capacity can only be found by linear guaging. All of them are of glazed pottery. On both accounts, therefore, no exactitude should be expected. They are all multiples of the same Syrian standard as before, 4, 2, 2, 2, 1, and $\frac{4}{10}$. The values they give are from 19.5 to 24.6 , with 22.0 as the mid value. This agrees with the more accurate bronze measures more closely than could be expected.

The large situlae with handles are of nearly the same capacity, xxi, nos. 69,70 , and contain 4 of the Syrian standard, giving a unit of 21.6 and 22.4. In these different classes, in which all examples conform to one standard, there is good evidence that they are certainly measures, and that hence any vessels giving simple multiples of this unit, between 19.9 and 23.6 , or 19.5 and 24.6 glazed, probably belong to the same system. Beside these, two border cases, just beyond those limits, are included in the catalogue, sect. 83.

Of all these, taking the bronze vessels alone, the median is $21.0 \pm 0.25 \mathrm{c}$.i. The Khufu standard cup is 20.8. The two Old Kingdom vessels give 20.6 and 24.0 , mean 22.3 , but probably the larger one was intended to be not quite filled. The extreme values that could be allowed to the sela would be 216 to 224 grains, corresponding to $21 \cdot 4$ to 22.2 c .i. On the whole 21.0 , or perhaps later 21.5 , seems most likely to be the true value; and 21.5
is the median of the whole list. The multiples by 6,18 and 24 are correct in this system, as the unit was $\times 36$ to form the saton measure.
80. A nother class of vessels that belong to one standard are the tall drinking pots, $\mathrm{xx}, 27,28,29$, which are copies of the usual pottery of the first half of the xviiith dynasty. These are simply related as $\frac{1}{2}, \frac{1}{2}$, and I_{2}^{1}, of the Egyptian hen, giving values of $27 \cdot 1,29.3$ and $30 \cdot 1$ c.i. This same standard is that of all the pots with handles, of Roman age, $\mathbf{x x}, 103,104,105,106$. The multiples are 2, $\frac{1}{3}, \frac{1}{8}, \frac{1}{16}, \frac{1}{24}$. These are regular fractions, $\frac{1}{3}$ hen is known as the khăy, and it was also binarily divided into $\frac{1}{8}$ and down to $\frac{1}{32}$. Though these little bronze jugs' do not promise much accuracy, they agree almost as well as the larger measures, giving $27.8,27.8,28.6,29 \cdot 3$, and $3 \mathrm{r} \cdot \mathrm{I}$ c.i. for the unit. The hen was ultimately divided by 120 at Edfu (Brugsch, Recueil, IV, xciv).

The class of open cups also belongs to the hen. The only one that appears to be accurate is the finely made spouted cup, $\mathbf{x x}, 76$, which is half a hen of 30.4 . The little cast cups, $\mathrm{xx}, \mathrm{r} 39,128$, are $\frac{1}{10}$ hen, giving 29.4 and 30.3 . The pottery cups, xxiii, 208-210, of $\frac{4}{10}, \frac{1}{4}$, and $\frac{1}{10}$ cannot be accurate; they show $29.9,3 \mathrm{r} \cdot 0$, and $3 \mathrm{I} \cdot 7$ for the hen, but they may not have been intended to be brimful. A blue glazed cup or bowl, 41, fig. 207, xxiii, was of 2 hen, of 28.5 ; only a fragment remains.
Between the limits of size of the bronze vessels which appear to be measures, 27.1 to $3 \mathrm{r} \cdot \mathrm{I}$, there are various others, as in the catalogue, nos. 36 to 63, which should probably be included in the series. Of these, there are four good bronze vessels, making io bronze, in all, of fair size. The median of these is:-

10 bronze vessels	$29 \cdot 0 \pm 0.3$ cubic inches
8 marked vases	$29.2 \pm 0.6, "$,

Hesy figures of measures 28.8 ± 0.6, allowing thickness

5 debens of water
 28.8, limits 27.5-30.0

Looking at these, it does not seem that we can do better than keep to the most accurate of this material, the bronze measures, and take the hen at 29.0 cubic inches.
81. Having now grouped the two commonest standards, the residue remains to be examined. There are several capacities which are obviously connected, $16.11,16.86,32.01$ to $33.8,49.6$, and, putting all of such together, there is a group of

12 vessels giving from 32.0 to $34 \cdot 1$ for a unit. This is evidently the Syrian log, which is stated at 31 in Phoenicia, 32 Judaea, and 33 Babylonia. All are of bronze or alabaster, and therefore may be accurate. The most probably correct is that with the cartouches of Amenhetep III, which is just at the mean value. The median of

```
II vessels is }\quad33.1\pm0.15 c.i
log}\mathrm{ is }31\mathrm{ to }3
necef mina of water 30.3 to 33.3
    " early values 30.7 and 32.1
```

As the necef was the standard of the north Syrian tribute, used later in Antioch and Cilician coinage, it is in the position to be connected with a Syrian and Babylonian measure. The amount of $33 \cdot \mathrm{rc.i}$. is however too large for the early necef; and, if the connection be true, the log cannot have been started before the x viiith dynasty, when the standard varied up to, and over 166 grains. Yet the \log was used at an early period, as the two spouted copper pots (xxii, 3, 5) of the Old Kingdom are 1 and $1 \frac{1}{2}$ logs; so this throws some doubt on the connection of weight and measure.
82. Another group of measures clearly connected (xxii, 52, 57, 58, 59, 61, 64) are 8.87, 17.41, 25.26, 33.4, 35.3. These are all of bronze, all but one are similar to bowls of early Greek period. They give multiples $\frac{1}{2}, 1,1 \frac{1}{2}$ and 2 of a capacity varying between 16.7 and 17.7 . This is the Attic kotyle, as nearly as that is fixed. The sources for that, in standards cut in stone slabs, give 14.6-19.6, 16.2-18.2, $17-18$, and probably $17 \frac{1}{2}$ in the best value. The Egyptian median is 17.2 ± 0.15

$$
\text { Attic about } 17.5
$$

if chous $=8$ minae, therefore 17.6 to $\mathbf{1 8 . 2}$, limits of mina.
There is no proof that the chous measure was 8 minae, but that is the only practicable connection of Attic weight and capacity. The sextarius measures of Pompeii (see Appendix) would show a kotyle of 17.73 , if the Roman and Attic were connected.
83. Beside the above there are two bronze bowls of about the Persian age (xxii, 60, 66) containing 37.25 and 37.63 c . i. These might be $1 \frac{1}{4}$ hen, but the multiple is unlikely; on the other hand they are half of

$$
74 \cdot 5 \text { and } 75 \cdot 26 \text { c.i. }
$$

and the Persian kapetis is 74.4 c . i.
They are probably therefore Persian measures.

This comprises all the vessels that are likely to be measures, or to have been made to correspond to such.
The resulting values for the standards are:-

	Cubic inches	Cub. centim.
Syrian 20.8,	or 21.4 ± 0.3	34 I or 350 ± 5
Hen	29.0 ± 0.3	475 ± 5
Log	33.1 ± 0.2	542 ± 3
Attic kotyle	17.2 ± 0.2	282 ± 3
Persian kapetis	74.9 ± 0.3	1227 ± 5

These values appear to be more accurate than the various information that we already have about these measures, mostly of late date. This is however the Egyptian version of the standards, which might differ slightly from the native values.
84. Catalogue of Capacity measures, pls. $\mathrm{xx}-\mathrm{xxiii}$.

The second number of each is that in the Catalogue of Stone and Metal Vases, except those marked 201-215 which are of pottery published here.

No.	Vase	Material	Cub.ins.	入	Unit	47	29
1	212	Wood, shrunk	38.4	2	19.2	48	139
2	53	Bronze	76.8	4	19.2	49	67
3	98	"	39.0	2	19.5	50A	
4	203	Blue glaze	19.52	1	19.5	50	62
5	77	Bronze	99.66	5	19.9	51	858
6	91	"	159.7	8	19.9	52	923
7	859	Alabaster xviii	$20 \cdot 2$	1	$20 \cdot 2$	53	209
8	99	Bronze	$366 \cdot 2$	18	20.3	54	28
9	65	,	$8 \mathrm{I} \cdot 4$	4	20.3	55	63
10	78	"	61.79	3	$20 \cdot 6$	56	128
II	11	Copper	123.8	6	20.6	57	76
12	835	Alabaster xviii	41.4	2	$20 \cdot 7$	58	904
12 A		Durite, Khufu	20.8	1	20.8	59	210
13	201	Lt. bl. glaze	41.6	2	20.8	60	103
14	213	Blue glaze	1.046	$\frac{1}{20}$	$20 \cdot 9$	61	96
15	68	Bronze xxi	63.0	3	21.0	62	208
16	217	Blue glaze xii	0.53	$\frac{1}{40}$	21.2	63	127
17	211	Hard br. pottery	85.2	4	21.3		
18	79	Bronze	$42 \cdot 96$	2	21.5		
19	15	"	21.62	1	21.6	64	90
20	69	"	86.55	4	$2 \mathrm{I} \cdot 6$	65	939
21	922	Alabaster $\mathbf{x x v}$	21.72	1	21.7	66	16
22	206	Lt. bl. glaze	$8 \cdot 71$	0.4	21.8	67	840
23	832	Alabaster xviii	$43 \cdot 9$	2	21.9	68	3
24	204	Gy. bl. glaze	$44 \cdot 25$	2	$22 \cdot 1$	69	841
25	70	Bronze	89.6	4	22.4	70	5
26	834	Alabaster xviii	11.3	$\frac{1}{2}$	22.6	70 A	

Syrian standard.

[^0]| No. | Vase |
| ---: | ---: |
| 27 | 92 |
| 28 | 822 |
| 29 | 202 |
| 30 | 80 |
| 31 | 216 |
| 32 | 10 |
| 33 | 821 |
| 34 | 205 |
| 35 | 906 |

$36 \quad 27$

| $\mathbf{3 6}$ | 27 | B |
| ---: | ---: | ---: | ---: |
| -37 | 105 | |
| 38 | 55 | |
| 39 | 102 | |
| 40 | 905 | A |
| | 41 | 207 |

41	207
42	106

5
Bronze xviii
13.55

Bronze	xviii
$"$	Ro.
$"$	xix
$"$	Ro.

Alabaster xix

Bronze, Ro.
Wood

侑

-

B

B

Material	Cub.ins.	\times	Unit
Bronze	$546 \cdot 5$	24	22.8
Alabaster xviii	11.5	$\frac{1}{2}$	23.0
Gy. bl. glaze, frags.	92.0	4	23.0
Bronze, Gr.	$47 \cdot 2$	2	23.6
Gy. bl. glaze, frag.	72.1	3	24.0
Copper	$144 \cdot 2$	6	24.0
Alabaster xviii	24.5	1	24.5
Gy. bl. glaze	49.3	2	24.6
Alabaster xviii	24.7	1	24.7

Egyptian Hen.

13.55	$\frac{1}{2}$	27.1
1.74	$\frac{1}{16}$	27.8
6.95	$\frac{1}{6}$	27.8
55.90	2	27.9
14.07	$\frac{1}{2}$	28.14

27.1
$2 \quad 28.5$
28.6
H
B
", Gr.-Ro.
Horn, Kahun xii
Alabaster xviii

$$
\mathrm{P}
$$

B

Pottery	
Bronze	xviii
"	Gr.
,	Ro.

Alabaster xix

Po
Br
P

Bronze, Gurob
Syrian Log.

Bronze	$\mathbf{3 2 . 0 1}$	I	$\mathbf{3 2 . 0}$
Alabaster	16.11	$\frac{1}{2}$	$\mathbf{3 2 . 2}$
Bronze xviii	$\mathbf{3 2 . 4}$	I	$\mathbf{3 2 . 4}$
Alabaster xviii	$\mathbf{3 2 . 9}$	I	$\mathbf{3 2 . 9}$
Copper iv ?	$\mathbf{3 2 . 9}$	I	$\mathbf{3 2 . 9}$
Alabaster xviii	33.07	I	33.1
Copper iv?	49.62	I $\frac{1}{2}$	33.1
Copper xviii	33.26	I	33.2

No.	Vase	Material	Cub.ins.	\times	Unit
71	935	Alabaster	8.35	$\overline{4}$	33.4
72	18	Bronze xviii	16.86	$\frac{1}{2}$	33.7
73	109	Bronze, Ro.	33.8	1	33.8
74	75	Bronze	8.53	$\frac{1}{4}$	$34 \cdot 1$
Attic Kotyle.					
75	64	Bronze	33.4	2	16.7
76	61	"	8.36	$\frac{1}{2}$	16.7
77	58	,	25.26	$1 \frac{1}{2}$	16.8
78	59	"	17.41	1	17.4
79	52	"	35.3	2	17.6
80	57	"	8.87	1	17.7
Persian Kapetis.					
81	60	Bronze	37.25	$\frac{1}{2}$	74.5
82	66	"	37.63	2	$75 \cdot 3$

85. Notes on condition of measures.

Syrian.

I. Wood cylinder, split in two, warped, bottom shrunk. Guaged lineally.
2. Bronze, green patina; cracked.
3. Bronze, side broken out. Guaged by proportion.
4. Blue glaze, burnt, blackened: perfect.
5. Bronze cylinder, thin coat of black oxide: perfect.
6. Bronze bowl, edge partly broken.
7. Alabaster; perfect.
8. Bronze, very thin, brown patina, perfect, except loss of handles.
9. Bronze, black patina, perfect.
10. ", " small break in edge.
ir. Copper, green patina; perfect.
12. Alabaster, cracked and joined.

12 A. Durite, broken and rejoined. Of Khufu? (Pls. xvi, xxvi.)
13. Lt. blue glaze faded; perfect. Inscription impressed slightly, Nefer user neb taui. User probably blunder for neter.
14. Lt. blue glaze, broken and joined.
15. Bronze, thin brown patina; perfect. Funeral vase of Nesitanebasheru.
16. Blue-green glaze, apparently xiith dynasty.
17. Hard brown pottery; perfect.
18. Bronze, black patina; crack in edge.
19. " part bright, part red and green; perfect. Inscribed for the "washer of the sandals of Amen."
20. Bronze, figure of Isis standing, incised; green patina, perfect.
21. Alabaster; perfect.
22. Lt. blue glaze, chip off edge.
23. Alabaster; perfect.
24. Gy. blue glaze; perfect.
25. Bronze, green and red patina; holes in side for handle; perfect.
26. Alabaster; perfect.
27. Bronze, grey face, stout metal; perfect.
28. Alabaster, cracked and joined.
29. Gy. blue glaze, half of side and base. Guaged lineally.
3o. Bronze, green patina, crack round half bottom, hole in side.
3r. Gy. indigo-blue glaze, only quarter of side, slight indication of base. Chip in edge, patched with pitch anciently. Saqqarah.
32. Copper, green patina; perfect.
33. Alabaster; perfect.
34. Gy. blue glaze, complete.
35. Alabaster; perfect.

Egyptian Hen.

36. Bronze, red rough patina; perfect.
37. " green patina, neck cracked round; complete.
38. Bronze, green patina; perfect.
39. Bronze, green patina; perfect. Cire perdue casting. Contents to lower ring 14.5 , to middle 28.9 , to upper ring 42.7 , top 55.9 c.i. Mean unit 28.0 c . i .
40. Alabaster; chip from edge.
41. Lt. blue glaze, a third of the side and base. Guaged lineally.
42. Bronze, green patina; perfect.
43. Wood; perfect.
44. Bronze; lumpy green patina; perfect.
45. " green patina, marked " $\frac{1}{8}$ "; upper part, blue glaze.
46. Bronze, green; part of brim broken.
47. " bright, partly green; perfect.
48. ", cast; little break in brim.
49. ", green patina; long cut in neck.
50. " black patina; perfect.
51. Alabaster; chip from edge.
52. " perfect.
53. Pottery, drab, xxviith dyn.? perfect; found with 59 and 62.
54. Bronze, green patina; perfect.
55. " black patina; perfect.
56. " casting; clean brown, perfect.
57. " black patina; crack in edge.
58. Alabaster; perfect.
59. Pottery, light brown, buff facing, chipped.
60. Bronze, green and brown; perfect.
61. " clean, and green patina; edge broken.
62. Pottery, light red; perfect.
63. Bronze, thick green patina, Gurob; perfect.

Syrian Log.

64. Bronze, thick green patina; part of brim lost.
65. Alabaster; perfect.
66. Bronze, thin delicate work; bruised by pick on neck and shoulder.
67. Alabaster; perfect.
68. Copper, green patina; perfect. iind dynasty.
69. Alabaster; perfect.
70. Copper, green patina; end of spout lost. iind dynasty.
70 A. Copper, with cartouches of Amenhetep III.
7 1. Alabaster; perfect.
71. Bronze, green patina; perfect, and elastic cup.
72. " casting, Roman; part of foot lost.
73. " thin, green patina; perfect.

Attic Kotyle.

75. Bronze, green patina.
76. " brown and green patina; perfect.
77. ", thick, sharp, casting; perfect.
78. ." thin as 76, 80; black patina; edge slightly broken.
79. Bronze, green patina; perfect. Tell Yehudiyeh, tumulus IV, 20.
80. Bronze, inside clean, out brown and green; perfect.

Perslan Kapetis.

81. Bronze, green, thick, sharp, casting; perfect. 82. " black patina; perfect.

86. Gold dust measures.

A unique set of seven measures (pl. xxiii) was found in the South Town at Nubt (Naqada 67): as there were some traces of the xviiith dynasty there, such is probably the date of these measures. They are a series of binary divisions, the largest holding piled gold dust of 742.5 grains or $\frac{1}{2}$ deben, the others down to $\frac{1}{12 \overline{8}}$ deben, which was the Ethiopian gold unit of the pek. The mean scale is to a deben of 1488 grains. As these are too small for liquid measure, and agree with the deben of gold dust, there can be no doubt of the meaning of them. The mean error is 6.5 grains.

CHAPTER XVI

LINEAL MEASURES.
87. THE cubits are all of wood, excepting a standard slab of limestone, and four fragments of stone cubits. The latter were made as ceremonial objects, of importance for the inscriptions which cover them, but varying so much in the amount of the digit that no precise result can be obtained from the short lengths of the pieces. The cubits are here arranged in the order of length.
For measuring these, a standard brass scale by Dollond was used, divided into tenths of an inch, supplemented by an ivory scale of fiftieths, read to thousandths by estimation. The brass scale is of true length at $62^{\circ} \mathrm{F}$.; it was one of Capt. Kater's original standards in 1824, since verified at the Standards Office in 1876.
(r.) Square wooden rod, 0.75×0.75 inch, with caps of cast bronze on the ends, rather loose, Roman? The mean scale of the divisions is fairly regular but shows a much shorter unit than the butts; it appears as if the cast caps were put on entirely in excess of the scale length. As they were rather lumpy with rust, the ends were ground down on slate until the metal just showed on parts of the surface. The scale values were read along both ends of the cuts.
The divisions are in six palms of 3.4 inches in a cubit of 20.4 , the end palm divided in one, one, and two digits. The palm spaces are, on opposite edges,
$\begin{array}{llllll}\text { cap } & 3.611 & 3.407 & 3.396 & 3.412 & 3.424 \\ 3.623 & \text { cap }\end{array}$ $\begin{array}{llllll}3.606 & 3.406 & 3.408 & 3.407 & 3.417 & 3.623\end{array}$
Thus the most skew line is not more than 0.012 askew. The mean palm value is 3.409 inches mean difference 0.003 inch; and the end caps are 0.20 and 0.21 in excess. The cubit of six palms would be 20.45 mid 0.02 ; and the total length is 20.868 . The digit divisions agree to the palm scale, leaving all the excess on the end cap. The division in six is influenced by the Assyrian and Jewish cubit.
(2.) Very rough irregular slip from Gurob, Roman? (0.9 to $1.4 \times 0.35 \mathrm{inch}$), cut from a scrap of furniture; marking lines are wide and faint. Divided into six palms in a cubit of 20.6 , end palm is of four digits, second palm halved, sixth in four digits. The palm spaces, along the axis, are
$\begin{array}{llllll}\text { butt } & 3.38 & 3.29 & 3.85 & 3.04 & 3.51\end{array} \quad 3.46$
Beyond the end is another digit space. The mean, excluding the very rough butt, is $3.43 \mathrm{~m} . \mathrm{d} .0 .24$;
six such palms give a cubit of $20.58 \mathrm{~m} . \mathrm{d} . \mathrm{I} \cdot 4$. The total length from butt to a cut is 20.58 ; but no exact value can be taken from a measure so obviously rough.
(3.) A flat slip of wood from Kahun, 0.5×0.3 inch (xiith dyn.?), with wide cuts roughly made across it. The spaces are
$\begin{array}{llllllll}\text { butt } & 0.85 & 1.23 & 1.07 & 1.10 & 0.86 & 1.08 & 1.00\end{array}$
Excluding the butt, this gives a mean value of $1.03 \mathrm{~m} . \mathrm{d} .0 .09$. This is a twentieth of a cubit of 20.6 inches, m.d. 1.8. The result is very rough, but a decimal division of the cubit is known elsewhere (Pyramids and Temples of Gizeh, p. 180).
(4.) A round rod, 0.7 diameter, with two holes near one end. Rough cuts are made about a third around it, giving eleven digits. The lengths of the spaces are

$$
\begin{array}{rlllllll}
\text { butt } & 0.7 \mathrm{I} & 0.58 & 0.74 & 0.60 & 0.93 & 0.81 & 0.70
\end{array} 0.8 \mathrm{I}
$$

The mean digit, omitting the butt, is 0.737 , mean difference 0.09 ; showing a cubit of $20.6 \mathrm{~m} . \mathrm{d}$. o.3. This is just a normal value, though the divisions are so irregular.
(5.) A flat slip broken from the end of a bevelled measure, 0.75×0.17 inch, from Kahun, xiith dynasty. It only has two spaces, butt $2.89,5.85$, and traces of rough ink division in digits. This gives a space between lines of 2.96 palm, seven making a cubit of 20.72 .
(6.) A thick bar of wood, $3.10 \times 1 \cdot 56$, with bevel edge 0.9 wide. From Gurob, xviiith dynasty. It is divided on the bevel into six palms, forming the short cubit of 17.7 inches. At one end is a cut a tenth of an inch short of the butt. The cuts are very fine and sharp; but the surface is a good deal decomposed and powdery, and the ends decayed. The worst skew of the cuts is 0.012 , average skew 0.005:
butt 0.114 $2.946 \quad 2.97630342 .916 \quad 2.972 \quad 2.76$ butt
The mean palm is 2.97 , m.d. 0.03 , six making 17.83 , or seven $=20.8 \mathrm{~m} . \mathrm{d} .0 .2$. This is rather long for the palm of the normal cubit, 2.95 , and still more in excess of the palm of the digit 2.92. Hence it seems impossible to take the cut near the end as belonging to the digit standard, and the excess of the butt as agreeing with the cubit standard, though this might naturally be expected where a measure seems to show a small variation of standard. The end cut was perhaps a correction, marking 17.72 , corresponding to a cubit of 20.67 .
(7.) A long rod, 0.75×0.50 inch, with a middle mark, and one near one end. From Gurob, xixth dynasty ? It has been broken, but can be replaced within probably 0.01 or 0.02 . The lengths are, butt 20.61 break ($10.3-10.25$ cut added) 20.320 .73 butt.

How these are to be understood is not clear. 20.61 is obviously the cubit; but what can 20.32 and an additional digit mean? Both together, 21.05 , is too much for a cubit. It seems like a true cubit of 20.61 , and a cubit of 28 digits of 0.726 inches, with another digit added on.
88. (8.) A rectangular rod, 0.90×0.63 inch, with one edge bevelled. The whole of the narrow side is occupied with the titles and names of Tutonkhamen and his queen Onkhesamen. Found at Gurob, xviiith dynasty (Illahun 20, xxiv). One end has been broken off at a knot. The remaining end has a round hole sunk in it, 0.32 wide, 0.36 deep, as if to hold a terminal stud; therefore the butt length is only a minimum, and the real end is unknown. The divisions, from the butt end, are a palm, two halves, a palm, half and two quarters, a palm, a palm, and one lost. The palm series of spaces is
$\begin{array}{llllllll}\text { butt } 2.8 \mathrm{II} & 2.973 & 2.885 & 3.062 & 3.000 & 3.035\end{array}$ $\begin{array}{lllllll}2.846 & 2.962 & 2.865 & 3.051 & 3.010 & 3.060\end{array}$
The worst skew of the marks is 0.018 and the average 0.012 . The lines measured along were the back of the top, and the front of the bevel.

The mean palm, excluding the butt, is 2.99 , m.d. 0.06 ; seven such would make a cubit of $20.9 \mathrm{~m} . \mathrm{d}$. 0.4. If the butt was of full length, the plug in the end must have projected 0.15 or more.
This concludes the class of the normal royal cubit of Egypt, divided into seven palms.
89. Next are four examples of the Assyrian and Jewish cubit of 21.4 inches, divided into six palms.
(9.) Rectangular wooden rod, 0.60×0.75 inch, with six palm divisions on the narrow side, the end one divided into four digits. The palms are $\begin{array}{lllllllllllllllll}\text { butt } & 3.518 & 3.502 & 3.507 & 3.555 & 3.498 & 3.466 & \text { butt }\end{array}$ The mean palm, excluding the butts, is 3.518 , m.d. 0.02; and six such are 21.11 , m.d. o.r3. The butts are, one exact, the other 0.05 short.
(10.) Rectangular wooden rod; 0.50×1.05, with six palm divisions on the narrow side. At one end the name ANOYTI incised. The end palm is divided into digits, the fourth digit halved; the third and the fifth palm are divided into digits. The palms are
$\begin{array}{llllllll}\text { butt } & 3.614 & 3.566 & 3.592 & 3.572 & 3.464 & 3.674 & \text { butt }\end{array}$ The mean palm is $3.555 \mathrm{~m} . \mathrm{d}$. 0.04 ; and six such are $21.33, \mathrm{~m} . \mathrm{d} .0 .2$. The ends are 0.06 and 0.12 in excess.
(ir.) Rectangular wooden rod, 0.60×0.85 inch, with six palm divisions on the narrow side, alternate palms divided in digits. The palms are
$\begin{array}{llllllll}\text { butt } & 3.44 & 3.51 & 3.65 & 3.56 & 3.50 & 3.41 & \text { butt }\end{array}$
The ends are evidently worn, 0.11 and 0.14 short; the mean palm is $3.555 \mathrm{~m} . \mathrm{d} .0 .05$, as previous.
(12.) Rectangular wooden rod, one edge bevelled, 1.25×0.6 inch; divided in palms, and a half at $4 \frac{1}{2}$ palms, broken away beyond.
$\begin{array}{lllllll}\text { butt } & 3.02 & 3.10 & 3.06 & 2.91 & 1.65 & \text { broken }\end{array}$
The mean palm is 3.02, m.d. 0.07 ; of which seven would be $21.16 \mathrm{~m} . \mathrm{d} .0 \cdot \mathrm{I}$.
90.(13.) Roughly rectangular wooden rod, 1.1×0.65 in middle, tapering to pointed ends: divided in 7 palms, and a middle cut. Divisions at
$\begin{array}{lllllllll}\text { butt } & 3.41 & 4.49 & 3.68 & 3.52 & 3.11 & 4.08 & 4.21 & \text { butt }\end{array}$ The mean palm from the divisions is 3.64 m . d. o. 16 , or for 7 palms $25.48 \mathrm{~m} . \mathrm{d}$. I.I. The divisions are so wildly irregular and rough that the present total length 26.50 seems more likely to be true, especially as the mean of the two end palms is rather over the mean palm of divisions. This means, then, two feet of 13.25 inches.
(14.) Roughly rectangular wooden rod, with a bevelled edge. Divisions across the top and the bevel, marking 7 palms, and a middle cut.
butt $\begin{array}{llllllllll}3.53 & 3.90 & 4.00 & 3.67 & 3.89 & 3.68 & 3.00 & \text { burnt butt }\end{array}$
The mean palm is $3.82 \mathrm{~m} . \mathrm{d} .0 .03$, of which seven would be $26.74 \mathrm{~m} . \mathrm{d} .0 .2 \mathrm{I}$. The cuts are well formed, and square with the edge. The butts are obviously shorter than the average palm, and one is burnt. This shows then two feet of 13.37 inches.
(15.) A piece of palm rib, 1.1×0.7, with ten very rough cuts upon it, o.io to 0.15 wide and askew. The fifth mark is larger, and there is a wide space after the tenth.

$$
\begin{array}{llllllll}
\text { butt } & 0.93 & 0.85 & 0.67 & 0.80 & 0.93 & 0.93 & 0.74 \\
& & 0.73 & 0.80 & 0.69 & 0.98 & &
\end{array}
$$

Mean value $0.816 \mathrm{~m} . \mathrm{d} .0 .025$, multiplied by $10=8.16$ m.d. 0.25 . The only likely origin for such a unit would be $\frac{1}{25}$ of the cubit of 28 digits, 20.40 . This would require exactly the normal digit 0.729 inch. But the weathered condition of this, and the roughness of the divisions, suggests a late Arabic source. This completes the wooden measures.
91. The stone scales are, one of the 26.8 inch cubit in seven palms, and three fragments of the 20.7 cubit.

The 26.8 measure is remarkable, as the only known standard measure for comparisons in Egypt. It is a slab of limestone 26.9×12.75 to 12.9 wide $\times 2.3$ to 3.0 thick. It is smoothed on the upper face, and across the whole breadth of it are six drawn lines. The average error of straightness and parallelism of these is 0.007 inch ; the mean of the palms between the lines is 3.829 , mean difference 0.006 , or for seven palms 26.80, m.d. $0.04, \pm 0.015$. This is obviously the same unit as the two Kahun wooden measures of 26.5 and 26.74 which take back the history of the standard probably to the xiith dynasty.

The date of the stone standard is probably Ptolemaic or Roman; it was found in surface digging in material of that age at Memphis. The links of this to the northern countries will be noted below.
92. The fragments of other stone measures were ceremonial, without any accuracy of division. The first, pls. xxiv, $x x v i$, is of hard white limestone of smooth grain, very finely engraved with hieroglyphs; these are certainly not later than the xiith dynasty, while from the style, and the presence of Horus and Set as the double rule, the v th dynasty seems to be the age. It comprises parts of the 7 th, 8 th and 9 th digits, marked by those nomes of Upper Egypt.

The second piece is of hard, almost crystalline, limestone, like that used at Amarna. It is clearly of late age, Saite or Ptolemaic. It comprises the 7th to roth digits.
The third piece is of black basalt, the end of a cubit marked "royal cubit," and comprising the 1st, 2nd and 3rd digits, with a prayer to Tehuti-ap-rehui below. The mention of Baken-nefu recalls the prince Baken-nefi on the stele of Pionkhy, who is likewise linked there with the city of Te -huti-ap-rehhu.

The fourth piece is of a different character, being entirely private, and without any divisions. The form with a bevel shows that it has been a measure; it was dedicated for a lady Aset-reshu, who "beheld Isis," or died, in the age of 89 years 4 months and 20 days.
93. The various cubit rods that are already known elsewhere show several lesser units marked upon them, which are copied on pl. xxv from

Lepsius, Die Elle. A length of six digits is marked, or 4.35 to 4.4 inches : Eight digits or 5.8 to 5.9 inches : io digits called the "small span"; the only value which can agree to the name on all the rods $=7.3$ to 7.4 inches. The "great span" of 12 or 13 digits, 8.7 to 9.6 inches. The "glorious measure" zeser of 15 digits, 10.9 to 11.1 inches. The remen cubit of 18 digits, or 13.1 to 13.3 inches. Another unit of 19 digits, or 13.8 to 14.0 inches. The lesser cubit of 22 or 23 digits, or 15.2 to 16.2 inches. Finally the royal cubit of 28 digits or 20.6 inches. It should be noted that though the lesser cubit is usually stated to be 24 digits, it is distinctly limited as not over 23 digits on the two most detailed cubits.

These various lengths are evidently other standards, approximately marked on the royal cubit; there could be no sense in specially marking such numbers as 15,18 or 19 digits merely as such fractions of the great cubit. We must look to other sources to see what standards were known which could thus be notified. Apart from the decimal digit, which is a well recognized measure, a quarter of the diagonal of the cubit, there are

Digits	Inches		Pyramid courses
6	4.35-4.4	入3 13.1-2, Northern foot	
8	5.8-5.9	$\begin{aligned} & \times 2 \text { II.6-8, Roman } \\ & \text { foot II. } 6 \mathrm{I} \end{aligned}$	$23 \cdot 2$
12, 13	8.9-9.6	$\times 2$ 17.8-19.2, Persian cubit 19.2	38.2
15	10.9-11.1	Punic foot rism	22.2
18	$13.1-13.3$	Northern foot 13.2	26.3
19	13.8-14.0	Philetairean foot 13.8	28.0
22,23	15.2-16.2		

Thus all but one of these lengths are measures known in other countries. The Roman foot is old Italic or Etruscan, and early Greek; also the diameter of Stonehenge is 100 feet. The Persian cubit remains yet in its double, the modern arish of $\mathbf{3 8 . 2 7}$ inches. The Punic foot is best found from the sarcophagus at Byblos, ir.10, and varies from 11.08 to 11.17 over the Punic colonies (Ancient Egypt, 1923, p. 34). The northern cubit is the most interesting standard known, for its long history and wide spread. It was a third of a fathom of about 79 inches, and the double of the 13 -inch foot. The varieties are

	Foot	Cubit	Fathom
On cubit rods	13.2	26.4	79.2
Standard block		26.8	80.4

	Foot	Cubit	Fathom
Kahun rods	13.2 26.5 I 3.3 26.7	79.5	
Asia Minor	13.3	26.7	80.1
Greece	13.3	26.7	80.1
Roman Africa	13.4	26.9	80.7
Stambuli cubit	13.3	26.6	79.8
Silbury hill	13.0	, 26.0	78.0
Belgic foot	13.1	26.2	78.6
English land measure	13.2	26.4	79.2
\quad mediaeval foot	13.2	26.4	79.3
French architects	13.0	26.1	78.24

At Silbury hill the stones around it were a fathom apart, and the radius 40 fathoms. The Belgic foot was too firmly established to be ousted, and the Romans had to adopt it on the German frontier. The English land measure of io fathoms I chain, 10 chains 1 furlong, 10 furlongs one old mile, is much older than the foot and yard, which were inserted on the awkward basis of $5 \frac{1}{2}$ yards one pole. The mediaeval $13 \cdot 2$-inch foot is much commoner than the 12 -inch in buildings. French architects used the canne of 78.24 inches.

The pyramid courses above stated, are thicknesses frequently repeated in the Great Pyramid, which suggest that standards of these values were known and used,-perhaps by foreigners,-side by side with the Egyptian standards, see Ancient Egypt, 1925, p. 39.
94. There remains the difficult question of possible relations of the lineal standards to those of capacity, which we have already seen to be probably linked with weight standards. An immense amount of theorizing has been spun upon this subject, and it is very hazardous owing to the uncertain values, the abundance of multiples that may be tried of both capacity and lineal units, and the effect of the complication of cubing the units. It seems highly unlikely that a primitive connection should exist between lineal measure and weight, as capacity measures are not likely to arise till both are fixed. Also it is unlikely that the attention should first be given to great amounts of cubic feet and talents, and not rather to pints and pounds. The most probable field for examination is in lesser amounts, as follow.

The Syrian standard of 21 cubic inches is the cube of a palm of 2.76 inches, giving a foot of 11.04, rather short for the Punic foot. Yet this is so near, and so probable in its local connection, that it seems likely. If the early measure is really
as low as 20.8 c . i. the palm would be 2.75 , or foot in.00, which would be too short.
The Egyptian hen of 29.0 cubic inches, defies any likely origin in Egyptian measures; 10 hen, 290.0 inches, is the cube of half the northern foot of 13.26 , as found in Egypt. This is as close as our knowledge goes, but seems very unlikely. It would point to weight and capacity measures coming in by way of Syria from the north.

The Syrian log of $33 \cdot 1$ cubic inches is the cube of $\frac{1}{3}$ of the Persian foot of 9.62 inches; but there is no ground for taking that as divided into 3 palms of 3.211. The locality, however, is possible.

There is no satisfactory explanation of the Attic kotyle of 17.2 cubic inches. It is possible that the half a Northern foot of 13.01 , cubed, might have been repeatedly halved down to $\frac{1}{16}$ th. The fair Achaeans being probably northern in origin would be a likely source; and though the foot is a shorter variety than that which belongs to Egypt, yet it is in accord with Silbury Hill and the Belgic foot, as well as the later French canne. A nother possibility is that as the chous was 8 minae, the mina was $1 \frac{1}{2}$ kotyle or 26.0 cubic inches of water, the side of which was 2.96 inches; this might be a palm $\frac{1}{7}$ of the 20.75 cubit, formed from the Greek foot of 12.44 inches.

The Persian kapetis of 74.9 cubic inches multiplied by 16 , or $\frac{1}{3}$ of the artaba, is the cube of 10.62 inches, half a cubit of 21.24 . The four Egyptian cubits of this unit, described here, average 21.23 . The length then agrees, and this unit, rather longer as 10.7 , is that of Persia.

So far as those relations go, it may be fairly said that the Persian 74.9 is well explained, but the others are rather too inexact or far fetched, though quite possible.

CHAPTER XVII

BALANCES.

95. Some boxes of balances, with or without weights, have been obtained; these weights have been dealt with before in their place, under the Ungia. The means of weighing, apart from the weights, háve to be described.
The oldest balance beam is of red limestone. From the nature of the material it is apparently prehistoric. It is 3.35 inches long, 0.16 to 0.20 wide, 0.17 to 0.20 deep (Prehistoric Egypt, xlvi, 36). The middle hole for suspension has a short tube rising
from it; hence the centre of motion is far above the suspension of the pans, and the balance is very rigid, so that equality can only be seen by the exact level. There is a difference of 1 in 120 in the arms; and a change of I in 500 can be seen by the change of level.
96. After that, there is not here any balance till Roman times. The finest (pl. xvi) is a box, $12.2 \times 5.6 \times 1.5$ inches, with an iron band round one end, studded with iron nails. This retained the end of a wooden tray $10.6 \times 4.4 \times 0.6$ inches. In the box is a balance beam, with suspender-loop and vertical tongue, of very slight make, 9.5 long; and two pans of brass $\mathbf{3 . 2}$ diameter. Five brass weights are sunk in square holes fitted to them, all in perfectly fresh condition with original polish. These are nos. 5399-5403, pl. xlvi, from six ounces down to two nomisma, with an average error of 2.4 grains. Also a loose weight marked .l., which does not belong to this series: one empty square pit shows a weight to have been lost. In the tray is a lesser balance beam, 6.8 long, with two pans of 1.75 wide, which fit the tray; also a second pair of pans $2 \cdot 1$ wide. Two round weights of ounce and half ounce are here, two coins slightly ground, and two glass lumps, nos. 5405-5410. The coins of Constantine II and Constans as Caesars, must be between 333 and 337 A.D., and were probably not placed here later than 350 . The tray has six square holes, to which nothing fits, and two lids to holes.

Another box, $5.8 \times 1.85 \times 0.9$ inch, contains a beam 3.95 long, with pans 1.2 wide. A lid slips under a catch on one end, and has two hooks projecting to hold studs on the sides of the box. There are two square pits for weights, but none fit in them; four lie loose, nos. $5411-5414$. No. 5412 has a faint impress, apparently of a pegasus.

Another box is $8.5 \times 2.5 \times 1.3$, with a lid. A square hole, and a round hole, are cut in the block for weights. Beam 5.7 long, pans I .6 wide. In it was an odd lot, in which no unit is obvious; white glass bottle stamp, with Eros, 85.0 grains; Ptolemaic coin 76.3; triply forked piece of hard wood, 58.0 ; a blue glazed melon bead, 4 I .6 ; a glass weight of El 'Azyz (975 -996 A.D.), 22.8; a slip of blue glass inlay, $9 \cdot 6$; lastly a bone hair pin with scoop end. These seem as if dropped in by a sebakh digger as they turned up.

Box $8.4 \times 2.6 \times 1.2$ inches; lid split in two, drilled for repair. Beam 6.2, pans 1.6 wide and a second
pair 1.85. A square pit has a thin lid, and a scrap of stuff at the bottom; there are two round pits. Three nomisma weights here, are nos. $5300,5369,537 \mathrm{I}$. Fourteen cowries of very various sizes, five cone shells, and an iron ring, may all be later additions.
Box $6.75 \times 3.0 ? \times 1.2$, side broken away. Tray for a balance 5.3 long, and pans 1.6 wide, all lost. In the body 2 large square pits and 8 round: in the tray 2 oblong pits.

Box $6.5 \times 2.4 \times 0.6$. Two square pits. Two pans left, I .3 wide.
97. Of other countries there are a few examples of scales.
Frankish balance, beam 4.5 long, pans 1.6 wide: no case.
Box, cut in a block with rounded corners, $4.8 \times 2.0 \times 0.85$; lid attached by wire hinges. Beam 3.7 long, round pan 1.05 wide, triangular scale 1.6 wide. Nest of cone weights of XUD, xxxD, vs, of $92 \cdot 0,229 \cdot 2,457 \cdot 7 \mathrm{grs}$., mean value $9 \mathrm{r} \cdot 6$, mean error 0.3. Round brass weights of George II guinea (128.1), 21 S (129.0), 21 IS (120.5), 13S6D (83.3 grs.). Paper in lid of "proclamation on 24th June last" of limits of light weight allowance on guineas before and after 1771 .

Box, constructed, $5.75 \times 2.75 \times 1.1$, lid with wire hinges. Beam $5 \cdot 1$ long, pans 2.0 wide. Paper in lid of standard weights of moidores, $\mathscr{B} 312 \mathrm{~s}$ piece, $\mathscr{L}_{1} 16 \mathrm{~s}, 18 \mathrm{~s}, 7 \mathrm{~s}$, guinea, half guinea, pistole.
Nest of weights, turned in brass. I pound down to $\frac{1}{4}$ ounce. The outer pan is $7 \cdot 1$ grains light, on the mean scale, and apparently worn below. The mean scale of the others is to a pound of 6993.4 grains, or 6.6 grains light. The mean error of the weights is 1.0 grain. Probably late x viiith century.
Chinese balance in a box with two drawers, and upright stand to fit on box. Made for European use, with numerals of style of xviiith century. Box $10.5 \times 5.25 \times 4.3$ high. Beam 8.9 long, pans 3.9 wide. Box ends to beam. Brass weights of native form, of 0.2 tael, 2 to 10 taels, and 20 to 50 taels. Mean scale 579.78 ± 0.06 grains; mean error per tael $0 \cdot 1$ I grs.; the error is less on the larger weights, 20 to 50 taels having average error of 0.4 grs. or $\frac{1}{5000}$ th of the weight.

CHAPTER XVIII

OTHER COLLECTIONS OF WEIGHTS. Pls. XLVII-LIII.
As the material is much scattered, it seems desirable to put together, in brief outline, the prin-
cipal collections of weights to which reference has been made in describing the College collection.

Naukratis, Defenneh, and Cairo. Pls. XLVII-XLVIII.

98. When I went to excavate Naukratis, there were only a few dozen weights known from Egypt. After two seasons there, and at Defenneh, nearly r 300 were collected and classified. These were all published, and then the collection lay in reserve for some years, and were finally given by the Egypt Exploration Fund to museums in the United States. A few had been selected for the Cairo Museum; these, and others in Cairo to the number of 214 , are included in the outline list here issued, pls. xlvii, xlviii. The fuller account of all in this list is in the volumes on Naukratis I and Defenneh (in Tanis II), and the Cairo Museum Catalogue by Weigall. In the present list the less useful material is omitted, such as weights with serious amount of alteration, small weights under 50 grains which are less exact and difficult to attribute, and metal weights which are always the most liable to damage. After the gatherings above named, more weights were found at various sites and bought, and the whole of these were kept for University College, and form the present collection of over 3400 examples.

Gezer. P1. XLIX.

99. The weights found in the excavation of Gezer by the Palestine Exploration Fund, have all been weighed and published by Prof. Stewart Macalister in his Excavation of Gezer. These are summarised here in a classified list, pl. xlix. As there does not seem to have been any allowance made for chipping or wear, these amounts are minima, and may have been somewhat larger. For remarks upon them, see chapter XI.

Troy. PI. XLIX.
In 1887 Dr. Schliemann kindly obtained the following particulars of thirty-one weights, from Dr. Krause, keeper of the Völkerkunde Museum, Berlin. He also added details of eight in his own possession. These were all weighed to the nearest decigramme, and they are here reduced to grains to make them comparable with other collections. It is notable that the necef of Syria does not appear there. The limits of the different standards are very distinct.

Weights in the British Museum．Pls．L－LIII．
100．Forty years ago I weighed all the weights in the Graeco－Roman Department of the British Museum，and supplied a list of them，with estima－ tion of gain and loss．As that list has not yet been published，I have here revised it，in view of the later discoveries of the early standards and names，though hardly a single instance of re－attri－ bution proved necessary．This list is a useful appen－ dix to that of the Egyptian weights，as it shows how the early standards were continued in rather varied form in classical times．This material was used for the article Weights in the Encyclopaedia Britannica， 1890.

The system of this list is as follows．ist col．the Museum reference，the year，month and day of reception，and the number in the day list．2nd the material；B，bronze；G，glass；L，limestone；M， marble； P ，plumbum，lead； S ，serpentine； Sy ， syenite． 3 rd column the present weight in grains． 4th the total weight of changes estimated． 5 th the estimated original weight．6th the multiple．7th the resulting unit．8th the resulting mina．9th the source，marked A；Athens；Ae，Aegospotamos； B，Budrum；C，Corfu；Cg，Carthage；Co，Corinth； Cr ，Crete； Ct ，Catania；E，Ephesos；G，Gaul；Ge， Gela；H，Herakleia；K，Knidos；Kl，Kalymnos； Km，Kameiros；Kr，Kyrenaica；Ky，Kyme；L， Lyons；Lk，Lykia；N，Naxos；R，Rhodes；Ro， Rome；S，Smyrna；Sy，Syria．roth column，the marks or inscriptions；these are usually self－ex－ planatory，or will be readily understood on look－ ing at the multiple．
Daric．After a mixture of Peyem and Daric con－ fused，the second group is of a remarkable class of large rectangular marble weights，with two breasts on the top，sometimes joined by a handle． They belong to the daric and sela standards，see also 3 in Univ．Coll．； 14 come from the temenos of Demeter at Knidos， 2 from the temenos of the Muses at Knidos， 2 from the temple of Diana at Ephesos，others from Budrum（Halikarnassos）and Lycia， 2 from the temple at Jebail（Byblos）， 1 from Der el Kalaat，S．E．of Beyrut，and 1 from Cyre－ naica．Thus they are mostly，perhaps all，from temples，and therefore sacred standards．It is notable that，though with breasts on them，they do not come from Aphrodite temples or Cyprus．The usual Assyrian mina of 60 shekels or darics was used at Antioch，and at Cyzicus，where it was a stater or double shekel（＂tris，＂tri－stater），and mina
of 30 staters．The third group from Carthage has 3,6 and 12 as multiples，owing to the mina of 60 shekels being divided by 20 ， 10 and 5 ．
Litra．The Italic litra seems to have been a con－ fused group coming from three standards，peyem， daric，and Attic stater．
Stater．The Attic stater and mina is the com－ monest Greek standard．The marks，H，are a row of drachma signs トトト conjoined．The often blundered inscription $\triangle H M O$ ，is for $\triangle H M O \Sigma I O N$ ＂treasury＂standard，or＂public＂weight．In several marked instances，the standard seems to have been a double mina，trite or $\frac{1}{3}$ is 4587 ，tetart or $\frac{1}{4}$ is 3180 ， hemitetart or $\frac{1}{8}$ is 1796,1808 ， 1836 ，all showing a mina of 100 staters or about 13,600 grains．One weight of Antioch is on the single mina．

The types which appear，whole or halved，are of the following fractions of the mina．
Half crescent， 5 of $\frac{1}{8}$ ，I tetradrachm， ＂$\quad+\quad$ star 1 of $\frac{1}{8}$ ，
Crescent 3 of $\frac{1}{6}, 2$ of $\frac{1}{5}$ ， 1 of $\frac{1}{4}$ ，
Crescent＋star 3 of $\frac{1}{6}$ ，
Half tortoise， 8 of $\frac{1}{4}, 1$ of $\frac{1}{6}$ ，
Tortoise 3 of $\frac{1}{2}$ ， 1 of $\frac{1}{3}$ ，
Quarter amphora，I of $\frac{1}{8}$ ，
Half $\quad 2$ of $\frac{1}{3}, 1$ of $\frac{1}{4}$ ，
Amphora 5 of $\frac{2}{3}$ ，
Dolphin $\frac{1}{5}, \frac{1}{4}, \frac{1}{2}, 5$ whole mina．
Though there is some variation in most signs， yet the half sign is in weight a half or two thirds of the whole sign；there seems no distinction be－ tween the standards of different signs．They may belong to different families of makers．The obolos seems to have retained some independant position， as the fractions of $\frac{1}{6}, \frac{1}{3}, \frac{2}{3}$ of a mina，and $\frac{8}{3}$ of a drachma，are the simple numbers of 100，200， 400 and 16 oboli．

Necef．A few examples of this standard occur， half of them as small weights，others as mina， halves，and quarters．

Khoirine．A few examples of this are likewise partly small weights，partly mina and divisions： but usually the mina was taken over in Italy and divided in the familiar way there，into 12 unciae， each of 24 scripula．
Beqa．This standard seems to have been the origin of the Aeginetan and Roman systems．The Aeginetan range is $9060-9960$ ，or $180-199$ ，rather degraded from the low beqa 188－203．The Italic and Roman uncia ranges from 380－420，or 190－210， nearly agreeing with the whole beqa range $188-216$ ．

The types and half types of this system show a method like that of the Attic.

Half crescent 3 of $\frac{1}{10}$ of mina,
Crescent 3 of $\frac{1}{8}$,
Half tortoise $\frac{1}{8}$,
Tortoise $\frac{1}{4}$,
Quarter amphora 2 of $\frac{1}{8}$,
Half amphora $\frac{1}{4}$,
Amphora $\frac{1}{4}$,
Dolphin 2 of whole mina.
The marks on $46.4,47.3$ and 82.5 refer to the obolos, and the latter weight of 5 oboli shows the obolos as independant of the drachma. 282.0 bears a double mark, as 3 Aeginetan drachmae of 93.7 and four Attic drachmae of 70.2 . The double standard, or whole beqa, is shown by 752.3 marked $\Delta,=4$. The weight 294.2 can hardly be 20 oboli, and K is probably not a number but an initial. A light, or half, mina is named on 4823.3; and a still lighter, or quarter mina is named on 1159.7 which is called half, this would imply a mina of io beqas. In the next section is a litra mina of 12 beqas or unciae, the light Italic litra. Weight 194.4 is double marked as I uncia on one side, and with S as half uncia on the other side.

The great series of the Roman libra shows much corruption, the variations extending to a quarter of the whole amount. The median is 4905 and mean variation 100 grains. Even weights of the same nature and period show almost equal irregularity. The early black serpentine weights average for the libra 4956 with a mean variation of 86 . The solidus weights average the libra at $4819 \mathrm{~m} . \mathrm{v}$. 60. The latest oungia and nomisma weights average $4857 \mathrm{~m} . \mathrm{v}$. 122. The weights tested by a single official and certified by him vary from 4362 ot 5625 ; and those made in a uniform set vary from 4770 to ${ }_{51} 68$ for the standard. It would have seemed incredible that with the Roman legality, and the fine balances that were made, such gross errors would have been tolerated. On the other hand, sets of small weights, that are less pretentious, show exactitude, as in the set in a scale box at University College. Of the marks on this series there is no uncertainty, Λ for libra; ૪ or ${ }^{\circ} \mathrm{o}$ for oungia, uncia; SOL or N for solidus or nomisma; \mathbf{S} for semis or solidus; and the usual Greek numerals. The series of scripula from Lyons are fairly made, the average error being only 0.8 grain.

Sela, Phoenician or Alexandrian. For the series of breast weights, see the remarks in the daric
series. In three instances the multiples prove that a double mina was used. The general series is mostly Graeco-Roman, on the duodecimal division of the mina into 12 unciae; only one fifth of all belongs to the original Phoenician system of 100 drachmae in the mina. Apparently this standard was much confused with the lighter libra derived from the beqa. The Carthaginian weights are naturally on the Alexandrian system, which was so widely spread by the Ptolemaic coinage. The series of small weights with concave sides has a basis of 12.5 grains; this is like an eighth of the Aeginetan or a quarter of the Alexandrian, but falls between the two.

CHAPTER XIX
 THE DIALS AND DRAWINGS.

101. THE Egyptians regularly worked with a dial for measuring the altitude of the sun, by a shadow on a horizontal,-or later a sloping,-surface, with scales for the variation in each month. This form is best explained by the upper figure in pl. xxvi, which is a copy of a dial sold in lot 456 of the Hoffmann sale, 1894. The names of the months are all given. Below this copy is a dial cut in black steatite, the full inscriptions on which are copied in pl. xxv. It was made for Sennu, who held many priesthoods, but the inscription does not relate to the dial itself. At the lower point a mass has been broken off which rose up, doubtless to carry the edge which was to cast the shadow on the slope. The slanting lines on the slope show the place of the shadow for six hours, before and after noon, in different months. On the slope were six spaces, one for each month of spring and of autumn. Down the middle was a strip inlaid for the two months of the equinoxes. The graduation is not exact, and the latitude cannot be deduced from the maximum readings. When the dial was moved about, it was provided with a plumb bob, hanging down the projection which is now lost: this enabled the dial to be set upright.
102. The Greek form of dial, shewing the direction of the sun by the shadow of a polar gnomon, is independent of variation in altitude, but it must be fixed, or adjusted to the north whenever used. Of this form, a concave of a quarter of a sphere, ruled with hour lines, there is half a dial of large
size in the collection, published in Roman Portraits, pls. xvi and xxiii. Also half of a small dial in limestone, pl. xxvi here, with the uzat eye in relief on the outside.
103. On pl. liv two drawings on papyrus are photographed. They were bought as one roll, broken across the middle, found at Gurob, and therefore probably of the New Kingdom. The papyrus is divided into squares by red lines, averaging 1.3614 inches apart; this has no close connection to any measure, the nearest being $\frac{1}{8}$ of a foot of 10.89 inches which, before contraction of the papyrus by age, might be near the Punic foot of II•I. The whole roll was 21.7 inches wide, and the two drawings were each 30.3 inches high, before one was broken at the top. The subject of the drawings is a front and side view of a wooden shrine; this was suspended by twisted ropes, from the roof of a framework like a four-poster bed, and it was further secured from swinging by twisted ropes below, attaching it to the basis of the frame. The top of the frame is shaped like the usual lids of Egyptian coffers, sloping gradually up from the back, till it sharply rounds over to the front. There is no obvious use in such a form of lid, but it was copied from the roof of a canopy as shown here. The purpose of the form was highly ingenious; the top was of thin springy board, the sling near the flat end would tend to shorten it when loaded, the sling near the curved end would equally tend to lengthen it. Thus the total length of the spring top would be unchanged, although loaded with weight or unloaded. In this way the spring could act without expanding or contracting the framework in which it was fixed. When we see a shrine being drawn along over a desert road in a funeral scene, we might well wonder how its contents bore the jerks and jolts; this drawing explains the skilful arrangement of spring and slings, to reduce the roughness of the transport. For further detail, see Ancient Egypt, 1926, 1.

APPENDICES

Western Standards.

The use of a definite unit of weight in Egypt as early as the use of metal suggests that it is not unlikely that weight standards might be used for precious metals at the same stage of culture in Europe. This is confirmed by the weights in the form of a double axe (with an impossibly small
haft hole) found in Germany, Serbia, Switzerland and France; these conform to three main standards, the gold beqa or Aeginetan, the sela or Phoenician, and the necef or Syrian (Tools and Weapons, 14).

The collection of gold work of the Royal Irish Academy has been so well published by Mr. E. C. R. Armstrong (1920), that it is a favourable ground for enquiry on weights. Some groups of related objects show that there is good reason to expect the use of standard units. The gold box (371), weighing 467 grains, had in it a gold ring of 467 grs.; another box (372) of 476, had in it a ring of 482 grs .; clearly these are all made to one definite unit. A nother box (373) is 290 grs ., half the weight of a gold cup (376) of 588 grs .; these numbers are $2 \frac{1}{2}$ and 5 units, of which 4 equal each of the other boxes and rings, the unit averaging here $117.6 \mathrm{grs} . \pm 0.6$. Another group is of six gold balls found together ($341-5,347$), which are in the proportions of 10,8 , and 6 of a unit of $113.9 \mathrm{grs} ., \pm 0.8$. Another group is of flat band armlets found together (413-6) which are in the proportion of $6,7,8,9$ of a unit of 84.0 to $85 \cdot 2$ grs., average $84.8 \pm 0 \cdot 2$, or half of 169.6 . A nother group of armlets (193-6) has proportions of 50 , $4,6,6$ of a unit of $166.5 \mathrm{grs} . \pm 0.5$. Of two remarkable ribbed bracelets, one has 8 grooves, the other 6 , and they weigh 8 and 6 of the 100 grain unit.

It is, then, evident that we have here not only regular proportions between objects found together, but also general units, such as 117.6 and 113.9 , 169.6 and $166 \cdot 5$, varying a little as they do in all other ancient countries. As different classes of objects are likely to vary in their periods and their sources, the most likely line of enquiry was to set out in diagram the weights of objects of each of the fifteen different classes separately, and then study them to see where clusters of similar weights had any relation one to another. In this way it was found that the most usual unit of three of the classes was about 100 grains, another three classes showed about if 3 grains, two other classes showed 129 grains, and four classes agreed on 165 grains. Such were the direct results, and it was only afterwards that I observed that these were the three units of the European double-axe weights, and also the Babylonian daric weight. This may be taken as confirming the probability of these units having been used. After this, the remainder of each class, which did not conform to its most obvious unit already found, was examined;
it proved to be nearly all in conformity with some of the other three units. Fourteen of the residue agree together on a further unit of $145 \cdot 1 \pm 0.6$, which is the usual Egyptian standard; and eight are on the khoirīnē unit, 182.9 士 1.0.

In the following table each class is averaged separately, as this shows what variation existed in various times and places. The upper number of each entry is the number of examples, then the unit in grains, lastly the probable error.

Thus there are only four objects which do not fall in with the units frequently found here, and the range of variation of each unit in different classes agrees with the range of variation found in Egypt, or is rather less than that. Names have been applied to some classes, as those already in use were very long but not descriptive. The small rings, commonly called "ring-money," are not included, as they have
no distinct grouping, and cannot therefore indicate any result in their general diffusion.

Notes from Italian Museums.

Some results obtained when on a photographic tour in 1891 may be worth recording, and the notes on what awaits further examination will be useful for any future students.

Weights. In Bologna, Museo Civico, are 5 large stone weights dome-shaped with iron rings and adjusting pieces; between r and 2 cwt. each. Over roo stone and bronze weights.

In the Capitoline Museum are several large weights.
In the Kircherian Museum are 17 flatted globe weights, 12 edged disc, 6 disc, 22 pendant weights (? for steelyards), 18 small weights.

In Naples Museum are a hundred flatted globe weights (74179 to 74278) from io librae to $\frac{1}{4}$ uncia; a set of 13 bronze edged discs with silver marks, \times to $\frac{1}{8}$ uncia (74280-92). About 30 pendant weights. A set of corn-shaped weights, 10 librae to $\frac{1}{4}$ uncia (74293-74305). Lead weights 20 lbs . to I lb. (74394-74438).

Steelyards. In Bologna, 5 with hingeing loop reversal and 2 suspensors; 3 with saddle and 3 suspensors. In the New Capitoline are two reversing steelyards, and three rotating.

In Perugia is a rotating steelyard.
In the Kircherian, 3 with 2 suspensors, one with 3 suspensors.

In Naples, 27 with ring at end for reversal and 2 suspensors, 2 with saddle for 2 and for 3 suspensors.

Capacity measures. Two cylindrical bronze vessels (Naples 74600-r) have each an axial rod supporting three radii of bronze which form the top, and define the contents accurately for dry measure. The larger has the whole base dished upward, the smaller has the base dished over rather more than half. This is obviously done to stiffen it, and prevent pressure bulging it. The two crossing diameters were measured at top, mid, and base, and the depth at 9 points. From these measurements the means are,-diameters 10.20 and 7.38 inches, depths ${ }^{\circ} 8.72$ and 6.66 , contents (after allowing for axis and cross arms) 709.7 and 283.5 cubic inches. If these are intended for 20 sextarii and 8 sextarii ($\frac{1}{2}$ modius), they result in 35.48 and 35.44 for the sextarius, or 1703 and 1701 cubic inches for the amphora. This is rather higher than the three other standards known. It would be desirable to weigh the contents of water; but one measure has the bottom partly cracked and a bit gone, the other has the bottom patched with solder. It is best to stop all defects with wax when guaging by liquids. On the lesser vessel is pricked by points D. D. P. P. HERC. The axial pin in the lesser vessel has sunk 0.09 inch below the cross arms,
to which it is not attached. If due to sinking of the bottom, the contents may be now an inch or two in excess. Both vessels are turned. There is also a similar vessel of iron (74602) too much rusted to give accurate results.

The celebrated Farnese congius was inspected with a view to its antiquity. There is no true patina upon it, only a little superficial green; what appear to be patches of red oxide are drops of shell lac left when stopping a hole in the edge. The age of it must therefore entirely depend on the style of the inscription. It cannot be guaged by lineal measure.

In Naples (74165) is an ingenious weighing vessel for liquids. The pan has a long handle, with a slit along the middle, at the end of the handle was a counterpoise; a sliding suspensor travelled in the slit, and the vessel balanced at different suspensions according to the amount in the pan. The numbers in the graduation range from I to XII; it would not be difficult to restore the unit by trial. There are also some small bronze mug measures, probably for oil.

Foot measures. In the Capitoline museum are two monuments of architects. The most complete is that of Statilius; among his implements is figured a foot scale, divided in $\frac{1}{16}$ ths. This, by the average of all the divisions, gives 11.42 ± 0.04 inches for the foot, but the total length is ri.61. With it is a long rod represented, with widened ends (evidently metal terminals), and a knob which divides the rod in the proportion of $2: 3$. The total is 37.80 ins., with a variation by irregularity of ± 0.06. The knob divided it into 15.13 and 22.67 inches. As $\frac{2}{3}$ of 22.67 is 15.11 , the uncertainty of the total length (0.06) far exceeds the difference in the proportion (0.02). The ratio of $2: 3$ looks like the usual one of a foot to a cubit, but no foot of $15 \cdot 13$ is known, nor a cubit of 22.67 . There is however a cubit rod mark at 22 digits $=15.2$ inches.

The other monument is to M. Aebutius; a foot rule there has two digits and two quarters marked, giving a mean foot of 11.63 ± 0.03. Another slab, known as the Lapis Capponianus, with a foot divided in quarters, gives 11.67 ± 0.03.

In Naples the plain foot measures of bronze are II.500 (no. 76692), ir. 600 (76694), 1 I .662 (76697). Those divided clearly in half are $5.792+5.760$, 11.552 (76695); $5806+5.798$, 1 1.604 (76693); $5.801+$ 5.803, 11.604 (76696). Two are divided in 12 ths; one is very well divided, the mean value being
$1 \mathrm{I} .68 \pm 0.0 \mathrm{I}$, on total Ir .64 ; the other is badly divided and only the total can be trusted, ir. 68.

The whole of these foot measures, then, are

Statilian	total length	II.61
Aebutian	mean	II. 63
Capponian	mean	II. 67
Bronze measures (76692)	II.50	
	(76695)	II.552
	(76694)	11.60
	(76693)	11.604
	(76696)	11.604
		11.64
	(76697)	11.662

Thus $11.6 \mathrm{r} 3 \pm 0.01$ is the mean. Previous means from measures give 11.616 and from buildings 11.607, with probable errors of about 0.01. From the agreement of all these results it seems that it is unlikely to have been either $1 \mathrm{I} \cdot 60$ or $1 \mathrm{I} \cdot 62$.

Balances. The large conical sockets ending with a hook, are usually at Naples set up as supports for balances; but as 16 out of 24 are paired it is probable that they were generally the ends of large wooden balance beams. An observation of the exact position of finding would settle the purpose. The metal balance beams are always tapering; round, square or octagonal, but never deeper than the width. There are 8 examples of a beam divided in 12 for a rider weight. There are no tongues to the beams at Naples. In the Capitoline and New Capitoline are beams with tongues. In Perugia is a beam with both arms hingeing up to the long tongue.

These notes will show what a large amount is waiting to be done, to render the Italic collections of scientific use.

The Cowry as a weight.

- On enquiry from Prof. D'ARcy Thompson, he quoted several Greek references to the Xooplvr, cowry, adding "The Mediterranean species are all small... but the larger species from the Red Sea, Indian Ocean, \&c., have been articles of trade from time immemorial . . . you want for your hypothesis a cowry of 170 grains, Cypraea moneta and its allies (C. erosa, \&c.), are too small, C. tigris and the like are too big."
M. LoUis Germain in Les Mollusques recueillis dans les anciens monuments égrptiens, quotes as having been found in Egypt, Crpraea annulus, arabica, camelopardalis, caput serpentis, carneola, caurica, erosa, erythraensis, histrio, moneta, pantherina, reticulata, tigris, vitellus. By the kindness of Dr. Bather, I have received from the principal authority on the species, Mr. Cosmo Melvill, the following :-"Six species of Cypraea or cowry shell inhabit the Mediterranean out of a total of 215 recent species. Three of these are very small (of subgenus Trivia) and one British species is one of these (C. Europea). It weighs 9 to 10 grains only. The remaining three are called C. spurca, physis and lurida. I have had a fair sized adult specimen of this last weighed, the result 214 grains. Spurca and physis are both smaller, and would not weigh more than 120 or 130 grains, if that."

Dr. Harmer (British Museum) states that C. lurida is the largest species inhabiting the Mediterranean. One from Cape Verde Islands weighs 240 grains, and a smaller from St. Helena 142 grains.
[It is thus evident that the standard of the five syenite cowry weights, 170 grains, may well have its name and form from the known variation of the Mediterranean species Cypraea lurida.]

INDEX

Accuracy of weights, 26
Aeginetan standard, 19, 24, 44
Aha, gold bar of, 19
Alexandrian standard, 19, 24
Amenemhet III, weight of, 17
Amenhetep I, weight of, 17
Amenhetep III, measure of, 35
Aohmes weight, 13
Apries weight, 14
Aset-reshu, cubit, 40
Attic kotyle measure, 35, 37, 42
Balances, 42, 49
Beholding Isis $=$ death, 40
Beqa standard, 17, 24, 44, 47
Box of weights and' scales, 26, 42
Breast weights, 19
British Museum, weights in, 44
Bronze cases filled with lead, 15
Cairo, weights in museum, 43
Capacity measures, 33
list of, 36
Catalogue, system of, 8
Chinese standard, 43
origin of, 27
Chi-rho monogram, 16, 25
Coinage and trade standards, 13
Constantine IV, weight of, 25
Coptic numerals, 33
Cowry shell weights, 16, 17, 49
Cubit rods, marks on, 41
Cubits, 38
20.6 inches, 38, 40
21.4 inches, 39
26.8 inches, 40

Daric standard, 11, 23, 44, 47
Defenneh, weights of, 43
Dials, 45
Etruscan weights, 28

Foot, various measures of, 41
Forms described, 4-6 of different standards, 2 historical value of, 2, 4
Fractional weights, 7
Gezer weights, 10, 21, 43
Gold dust measures, 38
weights in Ireland, 46
Heliopolis weights, 13
Hen, measures, 35, 36, 42
Herfu, weight of, 19
Hesy, measures of, 34, 35
Hippopotamus head weight, 15
Historical changes detailed, 10
Honorius, weight of, 25
Hora, weight of, 20
Indo-Chinese-Etruscan system, 27
Irish gold weight, 46
Italian museum notes, 47
Jewellers' weights, 26
Kapetis, Persian measure, 35, 37, 42
Khenp weights, 14
Khent on weight, 16
Khety, weight of, 17
Khoirinē standard, 16, 24, 44, 47
Khufu, measure of, 34
weight of, 17
Kotyle, Attic measure, 35, 37
Lineal measures, 38
Lion weights, 23
Litra standard, 44
Log, Syrian measure, 35, 36, 42
Marks on weights, often secondary, 2, 17
Measures related to weights, 41
Meroitic mace head, 15

Metal weights altered by age, 3 discussed, 22
Multiples and fractions, 7 of standards adopted, 3

Names not specific, 3
Naukratis weights, 1, 43
Necef standard, 15, 24, 44, 47
Nefer-renpet standard, 10
Neglect of weights, I
Nomisma weights, 25
Northern foot, 41
Nub standard, 18
Onkh-nes-ra-nefer-ab, 12
Original values of standards, 20
Pala, Indian weight, 27
Palestine, named weights from, 1, 15, 16, 18
Papios, wéight of, 23
Papyrus squared for drawings, 46
Persian cubit, 41
Persian kapetis measure, 35, 37, 42
Peyem standard, 8, 23
Philetairean foot, 41
Phoenician foot, 41
standard, 19, 24
Prehistoric weights, 11,18
Punic foot, 41
Qedet standard, 13, 24, 47
Roman foot, 41,48
libra and uncia, 25, 44
capacity measures, 48

Saints on weight, 26
Saton standard, 34, 36, 41
Seer weight, 33
Sela standard, 19, 24, 45, 47
Senusert I, weight of, 17
Sextarius measure, 35, 48
Sma-nebui weight, 20
Solidus weights, 25
Squared papyrus for drawing, 46
Standards, classed by forms, 2 classed by multiples, I eight known, I
Stater standard, 12, 23, 44
Steelyards, 29

$$
\text { Arabic, } 32
$$

extraction of unit, 30
standards of, 3I
Syrian log measure, 35, 36
saton measure, 34, 36
System of catalogue, 8

Tael, Chinese weight, 27
Taharqa, weight of, 12
Tehutmes III, weight of, 17
Tortoise weight, 18, 24
Troy, weights from, 43
Ungia, uncia, standard, 25, 44
varied to fit other standards, 26

Weighing, method of, 3
Weights related to measures, 41
Wolf's head weight, 20

PUBLICATIONS OF THE EGYPTIAN RESEARCH ACCOUNT AND BRITISH SCHOOL OF ARCHAEOLOGY IN EGYPT

I. BALLAS, 1895 ; by J. E. Quibrll. (Out of print; obtainable in joint volume NAQADA AND BALLAS, by W. M. F. Petrir. 68 plates. 205. net.)
II. THE RAMESSEUM, 1896; by J. E. Qubril. (Out of print.)
III. EL KAB, 1897; by J. E. Qutbril.
IV. HIERAKONPOLIS I, 1898; text by W. M. F. P. 43 plates. 20 . net.
V. HIERAKONPOLIS II, 1899; by F. W. Grern and J. E. Quibrle. 39 plates (4 coloured and 20 photographic).
VI. EL ARABAH, 1900; by J. Gasstang. 40 plates. 16s. net. (Out of print.)
VII. MAHASNA, igoi; by J. Garstang and Kurt Setie. 43 plates. (Out of print.)
VIII. TEMPLE OF THE KINGS, 1902; by A. St. Grozar Caulrimb. 24 plates. 16s. net. (Out of print.)
IX. The OSIreiON, 1903; by Margarbt A. Murray. 37 plates. 25 s. net.
X. SAQQARA MASTABAS I, 1904; by M. A. Murray; and GUROB, by L. Loat. 64 plates. 30 s. net.
XI. SAQQARA MASTABAS II, 1905; by Hide Petrie. (In preparation.)
XII. HYKSOS AND ISRAELITE CITIES, 1906; by W. M. Flinders Petrir and J. Garrow Duncan. 40 plates. 255. net. In double volume with 94 plates. 455 . net. (This latter is out ot print.)
XIII. GIZEH AND RIFEH, 1907; by W. M. Flinders Petrie. 40 plates. 25s. net. In double volume with ro9 plates. 505. net.
XIV. ATHRIBIS, 1908; by W. M. Flinders Petrie, J. H. Waliker and E. B. Knobrl. 43 plates. 25s. net. (Out of print.)
XV. MEMPHIS I, 1908; by W. M. F. Petrie and J. H. Walrer. 54 plates. 25s. net.
XVI. QURNEH, 1909; by W. M. F. Petrie and J. H. Walker. 56 plates. (Out of print.)
XVII. THE PALACE OF APRIES (MEMPHIS II), 1909; by W. M. Findres Petrie and J. H. Waikrr. 35 plates. 25s. net.
XVIII. MEYDUM AND MEMPHIS (III), igio; by W. M. F. Petrie, E. Maceay and G. Wainwrioht. 47 plates. 25s. net.
XIX. HISTORICAL STUDIES, 1910. 25 plates. 25s. net. (Studies, vol. ii.)
XX. ROMAN PORTRAITS (MEMPHIS IV), 19II; by W. M. F. Perrir. 35 plates. 25 s. net.
XXI. THE LABYRINTH AND GERZEH, igii; by W. M. F. Prtrie, E. Mackay and G. Wainwright. 52 plates. 25s. net.
XXII. PORTFOLIO OF HAWARA PORTRAITS. 24 coloured plates. 5os. net.
XXIII. TARKHAN I AND MEMPHIS V, 1912; by W. M. F. Petrie. 8i plates. 25s. net.
XXIV. HELIOPOLIS I AND KAFR AMMAR, 1912; by W. M. F. Petriz. 58 plates. 25s. net.
XXV. RIQQEH AND MEMPHIS VI, ig13; by R. Engrlbach, Hilda Petrie, M. A. Murray and W. M. F. Petrie. 62 plates. 25s. net.
XXVI. TARKHAN II, 1913; by W. M. F. Petrir. 72 plates. 25s. net.
XXVII. LAHUN I, THE TREASURE, 1914; by Guy Brunton. 23 plates (8 coloured). 63s. net.
XXVIII. HARAGEH; by R. Engelbach and B. Gunn. 8i plates. 25s. net.
XXIX. SCARABS AND CYLINDERS, 1915; by W. M. F. Petris. 73 plates. 32s. net.
XXX. TOOLS AND WEAPONS, 1916; by W. M. F. Petrie. 76 plates. 35s. net.
XXXI. PREHISTORIC EGYPT, 1917; by W. M. F. Petrir. 53 plates. 25s. net.
XXXII. CORPUS OF PREHISTORIC POTTERY; by W. M. F. Petrie. 58 plates. 255 set.
XXXIII. LAHUN II, THE PYRAMID, 1920; by W. M. F. Petrie, G. Brunton, M. A. Murray. 75 plates. 25s. net.
XXXIV. SEDMENT I, 1921; by W. M. F. Prtrie and G. Brunton. 47 plates. 25s. net.
XXXV. SEDMENT II, 192I; by W. M. F. Petrie and G. Brunton. 43 plates. 255. net.
XXXVI. THE GOSPEL OF ST. JOHN, COPTIC MS.; by Sir Hrrbrrt Thompson. 8o plates. 25s. net.
XXXVII. TOMBS OF THE COURTIERS AND OXYRHYNKHOS; by W. m. F. Petrie, Atan Gardingr, Hilda Petriz and M. A. Murray. 55 plates. 25s. net.
XXXVIII. BUTTONS AND DESIGN SCARABS; by Flindres Petrie. 3o plates. 25s. net.

Subscriptions of One Guinea for the Annual Single Volumes, or Two Guineas for the Two Annual Volumes, are rectived by the Hon. Secretary, at the Edwards Library, University College, Gower Street, London, W.C., where also copies of the above works can be obtained.

PEYEM

มロッNios oid土y

N -1
$B E Q A$

$S E L A$

SN/2

3042
Δ

(1)

Digitized by GOOgle

\qquad

THE LEFT NUMBER IS OF THE CATALOGUE SECT. 84. THE RIGHT NUMBER IS OF THE VASE CATALOGUE.

ALABASTER

858

ATTIC KOTYLE $_{79}$

Digitized by GOOgle

In 2308 \&c, $\Phi 1 X=$ photograph in ph, $1 \times$ (frontispiece), and similarly $\phi \times V 1$ and $X X V I$.

No. ${ }^{\text {M }}$	MATERLALF	FonM	GRS. X	X	UNIT	DETAIL	No.	MATERIAL ${ }^{\text {F }}$	FORM	GRS. X	\times U	UNLT	DETAIL	No.	MATERIAL	Form	GRS. x	x	UNIT	DETAIL	
2358 B	BRECCIA	802	2550	21	127.5	XVIII	2417 A	BKQTzOSE	54	6434	12	128.6		2472	BR	452	$77800 \cdot$	OM 12	129.6	EM. -800	
	Alab.	496	637.55	5		AMARN -7 \%		Y.BK.SERR	149	42.9113	$1 / 3$	7			BX.WT. PORP:	65	259.52	2	7	XI	
2360 L	LIM.	63	637.65	5	5	MEM. VII			269	$2 \cdot 911 / 3$	$1 / 3$	7		4	B	38	$1297 \cdot 310$	10	7	delta	
	BA	422	$2550 \cdot 0$	20	5		20	O	63	257.4	2	7			B	351	3892.0 30	30	7		
	BA	2	25	20	5	XXIII		BAS. 3	355	2	2	7			RED GRAN	328	64830.	500	7		
B	BK-aTZOSE	3	3187.125	25	$\cdot 5$	XXIII		LIM. 3	393	5	5	7	SAIS		BR.QTZITE 4	452	7800	OM	7	-800	
B	BAS.	4396	6374'	50	5			A	14	5	5	7			BAS. 2	265	$4.91 / 2$	$1 / 2$	析		
5	GY	357	6376.50	50	5					3859730	30	7	SEE B	9	aN.sILIC.	795	$64911 / 2$	$1 / 2$	8	VIII	
L	LIM	15	15	M	. 5	-320		$B K \cdot Q T Z O S E$	10	6434.50	50	7	XXIII	2480	B	33	29.8	1	8		
7 G	GY.SILIC	15	127.6		.6					5 M	5 M	7	SEE B		LIM.	356	259.6	2	8		
8 A	ALAB.	426	637.8	5	. 6	KARNAK		BK.Y.SERP. 2	252	$6441 / 2$	$1 / 2$	$\cdot 8$			Y. LIM	79	649.3	5	8	Gebeleraxum	
9	BAS	378	1275.810	10	$\cdot 6$			BAS.	20	44115	5	8		3	IC.	10	324582	25	8		
			3828	30	6	SEE B			0	1287810	10	8					38 M	M	8	E	
2370	QTZIT	14	6	50		MERNPT. -50		3 BK.QTZOSE	55	1288.010	10	. 8	XXIII		BK. BAS. 12	12	64904.	500	8		
L	LIM.	38	8	50	$\cdot 6$	-12	9		427	10	10	8				899	9-9	2	9	VIII	
			25	250	.6	SEEN				65. 30	30	8	SEE B	6	RED LIM.	427	389.7	3	9	R NAK XVIH	
2	HAEM.	52	12771		. 7	XVIII	30	O BK. QTZOSE	436	6438. 50	50	8	X $\times 111$		or	26	12990	10	9		
3	HAEM	48	2555	2	$\cdot 7$	1		1 BAS.	254	7.8	2	9		8	BAS. 37	372	1299.5	10	9		
4	BA	656	1277.0	10	7	IV		2	8		5	$\cdot 9$		9	BAS. 3	356	2597.42	20	9		
5	L	314	$1 / 6$	1/6	8		3		3		5	9		490	BAS. 20	20	2598.72	20	9		
6 A	AL	38	5	5	8	MERNPTH		4	55	1288.810	10	9			BAS. 2	254	2600	2	30.0		
7 B	BA	368	1278.510	10	8		4A	L	646	3223.725	25	9	ZET, ABYD,601		HAEM. 4	3	. 1	3	-	RT	
8	BAS.	448	6390.50	50	8				38	154	50	9			BAS.	8	1299.710	10	0		
91	Ha	493	34	4/6	9	11		N	20	$15467 \cdot 2$		9			GY.SY. 1	5	6500.	50	0		
2380	alab.	426	127	1	9	MERNPTH	7	7	328	64.51/2	21	129.0	-2.		,	36	6501.	50	0		
	BA	14	63	5	9		8		425	1290	1	- 0			C	27		3			
2	QT	9	31968	25	-9	x×111	9	GY-QTZOSE	429	. 0	2	-			BAS. 2	15		5	1		
	BX-QTZOSE	9	3198.42	25	9	相	2440	0	339	8.1	2	-			BAS. 4	28	1301.0	10	1		
4	"	54	3836.530	30	$\cdot 9$	$\times \times 111$				50	5	0		9	BAS.	19	$2603 \cdot 22$	20	- 1		
4 A	"	63	4604036	36	9	$z \quad A B 4 B 510$	2		802	-	10	. 0	-1.4	2500	BK-QTZOSE	0	-1	5	1	XX	
5	HAEM	526	1280		128.0	$x \vee \\|$	3	3 PINK LIM.	436		10	. 0	VIII		ay. SY	0	3902.5	0		xXIII	
5A	A	49	256. 2	2	0	-20				1548.812	12	. 0	$\mid 51$	2	BK.WT.SY.	10	39035	0	$\cdot 1$	XXIII	
	BAS.	427	$1280 \cdot 310$	10	0			OSE		2579.8	20	. 0	X×111				$307 . \mathrm{M}$	M		SEEN	
7	LIM	916	$1279 \cdot 8$	10	- 0	KAHUN X			12		20	. 0			HAEM.		$21.71 /$	1/6		MEM.	
8	B	238	2559.62	2	- 0		6	6	9	$4 \cdot 8$	25	\bigcirc	XXIII		SARD	9	21.719	$1 / 6$	2	XVII	
9	BK.QTzose	16	3839.0	30	. 0	$x \times 111$	7	7	356	$12900 \cdot 10$	100	- 0	-40		CY.SERP.	424	5.1		2		
2390	HA	499				1	8		22.						A		65.1		2		
1	BA	33	$256 \cdot 2$								M	. 1	SEE B		H	28	130.2		2		
	BA	352	2560.82				8A	$A \mid P C$	653	9685.7	75	. 1	ZET,ABYD,510		ALAB			10			
3	BK-QTZOSE		3542.1 3	30		RIRQER XXIII		PINK LIM.	797	6460	5	2	XVIII	9	BAS.	382	$1302 \cdot 0$	10	2		
4	4 "	54	640\%	50		XXIII	2450	O BK- QTZOSE	54	3229.22	25	2	111	2510	BX.QTZOSE	11	508.	50	2	xXII	
5	A	35			- 2	MEM.		QTZITE	54	3876.1	30	2	$\times \times 111$		NUM.LIM.	314	81	M	2		
6	8	23		5	2		2		237	6459	50	2				38		2		MEM.	
7	ALAB.	790	641.15	5	- 2	XV	3			6460	50	2	55		GY.QTZOSE	06	651.6	5	3		
8	BD			10	-2	Area	4	4 GY. VOLC				3				26	$1303 \cdot 31$	0	3		
9	9 L	925	3846.	30	- 2	LTA		5	368		1	3			LIM.	79	$1303 \cdot 3$	10	3	MERNPTH	
2400	OBK-bAS.	314		200	- 2	-150	6				5	3			BKQTZOSE	10	3257.9	25	3	XI	
	H	43			3	Marathus	7		498		10	3	XVIII				21.	M		SEE B	
2	2 B	426		5	$\cdot 3$		8	8	367	2587.12		$\cdot 3$			ALAB.	339	65.2	1/2	4		
3	3 LIM.roush	220	1283.010	10	. 3						25	3	N		EM	49	6	$1 / 3$	4	XV	
4	4 BR.QTZOSE	875	+	50	. 3	T ABYD,121			10			3	$\times \times 111$		A	38	2608	2	4		
	5 Ala B.	30			4		2460		367			3	-50	2520		261	260.9	,	4		
	6 BAS				$\cdot 4$						12 M	$\cdot 3$	300		BAS.poroms	879	521.6	4		Abyd.	
*7	7 Alab.	8			. 4	QUFT XVIII	2	2 BR.SERP.	20	3882	3	4			,	26	$652 \cdot 1$	5			
	8	426	5		4		3	3	12	$3 \cdot 8$	10	4			BA	20	2600	25	4		
	9 BA		84.10	10	4		4	4 Breccia	795		10		RAN. XVIII		GY.SY.	314	6519.	50	4		
2410	0 BA	364	$12840 \cdot 10$	100	$\cdot 4$	-40				5.4	4M	4	SEEN		5 BK-QTZOSE	238	6521.	50	$\cdot 4$		
	BK-STEA.	898			- 5	E		5 GY.SER	4		5	5		6	HAEM.	896	130.5	1			
	2 HAEM.	498			. 5	MEM. XVIII		6 "	494	647.5	5	5	XVIII		ZOSE	21	30.5	1	. 5		
3	L	931	2	4				7 Y.SANDST.	339	12950	100	. 5	-90	8	AB	38	2610	2	5		
4	L	5	2570020					8	duck	$1621 / 8$	$1 / 8$	6	XVIII	9	B	352	261.0	2	5		
	HAEM.				. 6	RTA XVIII		9 Y.BK. SERP.	263		$1 / 3$. 6		2530	BAS.	372	2609.72	20	. 5		
	6 BAS.	14		20	6	RNPTH	2470		26	$3.21 / 3$	$1 / 3$	6			BK-QTZOSE	60	2610	20	5	10	
	7 CHLORITE									25							3261		5	XX	

No.	MATERIALF	FORM	GRS. \times	\times	UNIT	DETAIL	No.	MATERIAL	FORM	GRS.	\times	UNIT	DETAIL	No.	MATERIAL	FORM	GRS.	\times	UNIT	DETAIL
2881	BA5.	42967	676.85	5	135.4		6945	Y.BK.SERP.	26	$45.411 / 2$	$1 / 31$	$136 \cdot 2$		3011	$A L A B$.	206	68.5	1/2	137.0	
2	BAS. 3	384	676.95	5		"ATA"		BRECCIA	498	$68.111 /$	$1 / 2$. 2	XVIII		BAS.	406	137.0	1	. 0	MERNPTH
3	Y.BK.LIM.	367	677.15	5	4			BAS.	446	272.5	2	2			BK.SERP.	263	685:0	5	. 0	- 6
4	LIM.	79	1354. 1	10	4	-1.3 XV111	8	GY. LIM.	498	408.6	3	$\cdot 2$	XVIII	4	BAS.	312	6851	5	0	
	BAS.	33	1354.1 1	10	4		O	BAS.	368	680.8	5	- 2		5	BAS.	352	$1370 \cdot 0$	10	. 0	
6	MALACHITE	422	2708. 2	20	4	-10	2950	BAS.	395	$680 \cdot 9$	5	$\cdot 2$		6	BAS.	795	$1370 \cdot 0$	10	0	XVIII
7	FLINT PEB.		3385.82	25	. 4	INSCRIBED		BAS.	454	681.1	5	$\cdot 2$		7	BAS	12	$1370 \cdot 4$	10	0	
8	LIM.	452	$67710 \cdot 10$	10 M	4		2	BAS.	27	681.2	5	- 2		8	BK. SY.	10	2739.7	20	0	
9	BAS.	33	271.0	2	. 5	RIQQEH	3	bas.	354	1361.81	10	$\cdot 2$		9	BK. BAS.	618	$2740 \cdot$	20	- 0	-40×11
2890	alab. 4	498	406.5	3	15	EHNASYA, XVIU	4	HAEM.	DUCK	1362.2	10	$\cdot 2$	XVIII	3020	GY. SY.	264	13708.	2 M	- 0	
	BAS. 36	369	677.6	5	. 5		5	BK.SY.	235	$6811 . \mathrm{M}$	M	2			BAS.	265	137.1	1	1	
2	BAS.	352	1355.210	10	5		6	GY.SERP.	498	1363	1	$\cdot 3$	BORED, XVIII	2	BAS.	27	274.2	2	1	
3	SY.	10	3388.0	25	. 5	XXIII	7	BAS.	79	681.5	5	. 3	XVIII	3	Y. LIM.	435	$685 \cdot 3$	5	1	
4	ALAB.	22	$6774 . \mathrm{M}$	M	.5	MERNPTH	8	GY.SERP.	436	1363.3	10	$\cdot 3$		4	LIM.	311	$1370 \cdot 6$	10	1	
5	BR.QTZITE	1852	270344	4M	5		9	HAEM.	499	68.2	$1 / 2$. 4	XVIII	5	BAS.	352	1371.0	10	$\cdot 1$	
6	ALAB	491	22.6 1/6	1/6	. 6		2960	BAS.	392	68.2 1/2	$1 / 2$. 4		6	BAS	235	2743.1	20	1	
7	BUFF LIM.	266	$45.21 / 3$	$1 / 3$. 6		1	BAS.	33	68.2	$1 / 2$	4			BAS	33	68.6	$1 / 2$	2	
8	BK.SY.	17	135.6	1	. 6	oval	2	ALAB.	206	136.4	1	4	dELTA	8	ALAB.	39	137.2	1	2	
9	BRECCIA	802	406.8	3	-6	\times VIII	3	bas.	33.3	681.8	5	4		9	BAS.	802	274.4	2	2	XVIII
2900	bas.	254	678.2	5	$\cdot 6$		4	bas.	331	681.8	5	4		3030	BAS.	265	274.5	2	$\cdot 2$	
1	BAS	452	1356.1	10	. 6		5	bas.	33	681.8	5	4			BAS	27	274.5	2	2	
2	GY.SERP.	494	2712.0	20	. 6	XVIII	6	BAS.	428	681.9	5	4			BAS.	433	685.8	5	2	
3	$A L A B$.	254	1357	1	$\cdot 7$		7	BAS.	338	682.1	5	. 4		3	BAS.	356	685.8	5	- 2	
4	BAS	33	271.4	2	$\cdot 7$		8	$B A S$.	165	682.2	5	4		4	BAS.	238	1371.8	10	2	
5	Y.BK.LIM.	27	271.4	2	7		9	BAS.	331	1363.6	10	4			BAS.	238	$1372 \cdot 2$	10	2	
6	BAS.	803	407.0	3	$\cdot 7$	XVIII	2970	BAS.	39	1364.2	10	4		6	FOS. WOOD	10	2745.1	20	2	xxIII
7	BAS.	31.3	678.5	5	$\cdot 7$			BK.LIM	20	136.5	1	. 5			BAS.	347	6863.	M	2	
8	BAS	352	$1356 \cdot 8$	10	7		2	BAS.	372	682.4	5	. 5			GY.SERP.	406	274.7	2	$\cdot 3$	OVAL
9	BK.QT2OSE	55	2713.52	20	-7	$\times \times 111$	3	BAS.	26	273.0	2	. 5	-1.5	9	BK-QTZOSE	82	1372.9	10	3	
2910	BAS.	358	27150	20	7		4	ALAB.	$A B$	2729.2	20	. 5	X 11	3040	GY. SY.	406	137.4	1	4	
,	Y.LIM.	63	$13566 \cdot 2$	2 M	7	nnnon Qu. XII	5	QTZITE	369	$13650 \cdot 2$	2M	. 5			BAS.	435	$274 \cdot 8$	2	4	
2	Y.BK.LIM.	206	67.9 11/2	$1 / 2$	8		6	BAS.	331	68.3	$1 / 2$	6		2	BAS.	265	$274 \cdot 8$	2	4	delta
3	GN.SILIC.	26	67.9 1/2	$1 / 2$	- 8		7	BAS.	33	136.6	1	6			BK.SERP.	33	274.8	2	4	
4	BAS.	448	135.8	1	- 8		8	Alab.	141	273.2	2	. 6		4	BAS.	334	687.1	5	4	
5	BAS.	44	135.8	1	-8		9	GY.SERP.	12	273.3	2	. 6	MEM.	5	BAS.	448	687.2	5	4	
6	Lim.	801	271.6	2	. 8		2980	- BAS.	436	$409 \cdot 8$	3	6			BAS.	40	1373.6	10	4	
7	BAS.	27	271.7	2	. 8		1	BAS.	428	$682 \cdot 9$	5	.6			BAS.	428	1373.7	10	4	
8	BAS.	235	1358.2	10	. 8		2	ALAB.	338	683.2	5	. 6		8	BAS.	428	27490	20	4	
9	BK. QTZOSE	55	3396.0	25	- 8	Xx111	3	BAS.	336	2731.5	20	. 6		9	BAS.	312	$2749 \cdot 0$	20	4	
2920	RED GRAN.	345	13581. 2	2 M	. 8		4	4 BAS.	312	2732.2	20	6		3050	BAS.	264	6870.	M	4.	-66
	1 Y.SANDST.	368	13583.2	2M	. 8		5	BAS.	352	27320.4	4M	6	-3		BAS.	364	6871.	M	4	
2	2 BAS.	33	$135 \cdot 9$	1	9		6	Ala B	26	136.7	1	7		2	BAS.	314	45.5	$1 / 3$. 5	
3	3 BAS.	436	271.8	2	9			GY, SERP.	436	410.1	3	7		3	BAS.	33	137.5		. 5	
4	4 HAEM.	645	679.7	5	$\cdot 9$	VI		HAEM.	483	410.2	3	7	XVIII		BAS.	12	137.5	1	-5	
5	5 BAS.	336	1359.0	10	9		9	BAS.	38	$683 \cdot 6$	5	7		5	5 BRECCIA	795	412.4	3	5	XVIII
6	6 BAS.	352	21359.2	10	-9		2990	bas.	429	1366.9	10	7		6	6 BAS.	354	687.4	5	5	
			3397.0	25	9	SEE N		1 BK QTZOSE	9	3417.6	25	7	XXIII		7 BAS.	237	1375.1	10	5	
	7 HÁEM.	50	68.0	$1 / 2$	136.0	SSYRIA XVIII	2	BAS.	206	68.4	$1 / 2$	8		8	BAS.	40	1375.4	10	5	
8	BK-SERP.	908	$68.01 / 2$	$1 / 2$	- 0		3	BAS.	79	$136 \cdot 8$	1	8	MEM. XVIII		BK.SERP.	48	3438.7	25	. 5	MERN PTH
9	9 HAEM.	439	968.01	$1 / 2$. 0		4	WT. LIM.	38	273.6	2	8		3060	RED.LIM.	802	68.8	$1 / 2$	$\cdot 6$	XVIII
2930	O BK.STEA.	323	38.0	$1 / 2$. 0			5 BAS.	433	6840	5	- 8			Alab.	484	412.7	3	6	XVIII
1	1 BAS.	256	679.9	5	\bigcirc		6	6 BAS.	354	1368.4	10	-8		2	$A L A B$.	79	413.0	3	. 7	XVIII
2	DIALLAGE	435	$5680 \cdot 0$	5	-	-20	7	BAS.	406	1368.5	10	8		3	WT.LIM.	826	6884.	M	7	
3	3 BAS.	368	$8680 \cdot 0$	5	. 0		8	BAS.	33	136.9	1	9			4 BAS.	368	6885.	M	7	
4	4 BAS.	313	1360.1	10	- 0	,	9	BAS.	44	136.9	1	$\cdot 9$		5	BAS	452	45.6	$1 / 3$	8	
5	5 BK.QTZOSE	39	2720.5	20	- 0	$\times \times 111$	3000	BAS.	369	273.8	2	9		6	BK. STEA.	232	457	$1 / 3$	138.1	
6	6 BAS.	33	136.1	1	$\cdot 1$			1 BAS.	268	684.3	5	9		7	BAS.	33	45.7	$1 / 3$	\cdot	
7	7 bas.	338	$272 \cdot 2$	2	- 1		2	BAS.	498	6847	5	9	$X \vee$ mi	8	BAS.	263	$45 \cdot 7$	$1 / 3$	1	
8	8 BAS	795	272.3	2	- 1	xv111	3	BAS.	33	6848	5	9		9	BAS.	415	414.5	3	2	
9	9 HAEM.	803	680.7	5	- 1	xVIII	4	4 BAS.	352	1368.6	10	9		3070	LIM.	38	$46 \cdot 1$	1/3	$\cdot 3$	
2940	BAS.	352	21360.8	10	. 1		5	BAS.	422	1369.0	10	9		1	BAS.	38	23.1	$1 / 6$. 6	
	1 BAS.	352	21361.4	10	1		6	BAS.	352	1369.	10	9	-1.8	2	2 Y-BK-SERP.	14	23.1	1/6	6	
2	2 BAS.	352	2722.3	20	1	MEM.		BAS.	262	1369.2	10	$\cdot 9$		$\times 3$	BAS.	434	416.0		7	
			3401.8	25	$\cdot 1$	SEE K		BEKSY.	2.68	2737.4	20	9		${ }^{4}$	WT.LIM.	427	416.7	3	9	
3	3 BAS.	38	6805.	M	$\cdot 1$			BAS.	436	6847 M	M	9		5	BAS.	79	420.9	3	$140 \cdot 3$	
	A BAS.	$\mid 3391$	16806	M	- 11	1	13010	day. sy.	132	68.5			DFENNEH							

No. M	MATE RIAL FO	FORM G	GRS. \times	\times	UNIT ${ }^{\text {d }}$	DETAIL	No.	MATERIAL	FORM	GRS.	\times U	UNIT	DETAIL	.	MATERAL	rosan	GRS	x	UNIT	DETAIL
3266	BAs. 33	33	281.72	214	$140 \cdot 8$		3329	BR	378	1418.5	10	141.8		3389	BK.STEA.	63	71.4	$1 / 2$	142.8	XII
	BAS. 3	356	563.44	4	. 8	MEM.	0	LI	498	1418.3	10		Karnak XVIII 33	3390	BAS	202	285.7	2	8	
8 B	BK-QTZ 1	112	2816.220	20	8			GY. atzos:	10	3545.82	25	$\cdot 8$	III		GY.SY	54	714.2	5	. 8	
B	BR-aTZITE 18	1828	28160	200	. 8	-5		BK. ?	17	141.9	1	$\cdot 9$	xylil		ALAB.	605	1428.5	10	. 8	NUBT
3270	ALAB. 27	275	140.91	1	$\cdot 9$		3	GN.MARB 6	692	283.9	2	9	QUFT XII		QTZITE	329	28560	20	- 8	MEM.
	BAS. 4	429	70445	5	$\cdot 9$		4	BK. SY.	422	709.5	5	9			BAS.	245	2856.6	20	8	
A	ALAB. 9	915	845.36	6	$\cdot 9$	tarkhan 1		BR. FLINT	428	7096	5	$\cdot 9$			BR-QTZITE	44	714	500	8	-550
			3522.825	25	9	SEEK	6	BR.SERP.	655	1418	10	$\cdot 9$		6	BAS.	442	35.9	2	-2	
3 B	BAS. 14	144	47.0113	$1 / 31$	141.0		7	5 S	258	2839.0	20	$\cdot 9$		7	BK.	203	14290	10	9	
4 Y.	Y.BK-SERP. 1	197	47.0113	$1 / 3$	- 0		+ ${ }^{\text {A }}$	8	331	71.01	1/2 11	142:0	-	8	BA5.	331	2857.6	20	9	
5 Y	Y. LIM. 49	49	$47.011 / 3$	$1 / 3$	- 0		${ }_{8}$		33	2840	2	-					5715.	40	9	SEEP
6	BAS. 5	57	$70.51 / 2$	1/2	- 0	V	9	BAS	393	284.1	2	\bigcirc		9	GY. QTz.	44	71.5	1/2	143.0	
7 J	JADEITE 9	933	$70.51 / 2$	$1 / 2$	\bigcirc		3340	BAS.	8	$710 \cdot 1$	5	- 0		3400	breccia	301	$1430 \cdot$	10	-	-31
8	BAS. 2	258	$282 \cdot 0$	2	. 0			GY.SY	406	710.1	5	- 0			GY.sy.	317	2861.0	20	. 0	
9	ALAB. 4	406	282.12	2	- 0		2	ALA B	5	1419.7	10	- 0			ay.sy	165	7152.5	50	. 0	
3280	LIM. 4	486	564.14	4	- 0					$3549 \cdot 0$	25	- 0	SEEK	${ }^{3}$	1	5	$43 \cdot 1$	1	1	
B	BK-QTZOSE 13	13	705.5	5	- 0	-13				3549.6	25	. 0	"		ay.	245	2862.2	20	1	
2	ALAB. 2	264	$282 \cdot 2$	2	1		3	PINK LIM.	653	5680	40	0	nnquft.				7.6	25	,	SEE K
3	BK-QTZOSE	654	1410.910	10	$\cdot 1$	GHUROB, XXIII	4	SANDST.	629	7102.	50	- 0	XII		B	392	286.5	2	2	
4	GY.SILIC. 3	394	2821.3 20	20	$\cdot 1$			B	436	7102.	50	- 0			BA	203	715.8	5	2	
5	HAEM. 4	429	$70.61 / 2$	1/2	. 2		6	H	494	10.7	5	1	11	7	BAS	141	28631	20	2	
6	HAEM. 4	499	$70.61 / 2$	$1 / 2$	- 2		7	$A L A B$	649	5683.	40	1	GHU ROB, XVIII				726.	40	2	SEE P
7	HAEM. 5	505	$70.61 / 2$	$1 / 2$	2	MERNPTH	7A	Alab	11	23.7	$1 / 6$	2	MEM		H	497	-3	1	$\cdot 3$	$x \vee 111$
8	HAEM, LEAD 4	493	282.52	2	2	111	8	B	63	47.4	1/3	2			ALAB	338	286.7	2	3	
9	HAEM. 4	499	282.5	2	. 2	tartus, XVIII	9	$A L A B$.	397	1	$1 / 2$	2		3410	HAEM	498	1432.6	10	$\cdot 3$	XVIII
3290	BAS. 2	268	7059	5	-2		3350	GY.QTZ	426	71.1	1/2	2			SY.	352	2866.0	20	$\cdot 3$	
1	LIM. 93	937	$5646 \cdot 6$	40	- 2			BAS.	26	1422	1	2			IM	42	28667	20	$\cdot 3$	
2	BAS	312	$47.11 / 3$	1/3	$\cdot 3$			ALAB	55	4.5	2	2				264	. 4	1	4	
2 A	BAS.	368	$47.11 / 3$	$1 / 3$	$\cdot 3$	MEM.	3	BAS.	324	45	2	2			BAS.	86	6.8	2	4	
3	GY. bas.	393	141.3	1	- 3		4	B	225	8	5	2			BK.JASP.	19	717.2	5	4	
4	BAS. 4	418	1413.110	10	$\cdot 3$			BK. JASP.	126	1.1	5	2			GY.SY	264	3.5	1	5	
5	AlAb. 4	402	$1413 \cdot 510$	10	$\cdot 3$	MERNPTH		BAS.	2	11.2	5	2			BAS.	9	$143 \cdot 5$	1	5	
5A	GRNSTONE	64	4238. 3	30	$\cdot 3$	ZET,ABYD, III_{20}		B	20	5	10	2			B	42	287.0	2	5	
6	6 BK.SY.	458	7066	50	$\cdot 3$		8	LIM	265	43.5		2			bas	235	5741.	40	.5	
7	BAS.	267	70.7 \%	1/2	4					.5	40	$\cdot 2$	SEE P	3420	BK-GRAN.	313	28700	20	5	-30
8	8 HAEM.	487	141.41	1	4		9	ALAB.	1	284.6	2	$\cdot 3$	GHUROB, XVIII		BR-QTZITE	264	28710.	20	5	-7
O	9 BAS.	358	706.8	5	4		3360	B	2	1422.8	10	$\cdot 3$			BAS	4	7740	50	5	-30
3300	B	23	707.25	5	4	MEM.	OA	A	597	1423.5	10	3	ZE T. ABYD. 329		Alab	54	71.8	/2	6	
1	BAS.	38	707.3	5	4			BK.SY.	333	7113.7	50	3			4 GN.BK-LIM.	165	71.8	$1 / 2$	6	
2	2 BAS.	419	2828.8	20	4		2	STZOSE	315	7116.	50	$\cdot 3$		5	bas	381	$2872 \cdot 7$	20	$\cdot 6$	
3	3 GY. SY.	2	2828.92	2	4			GY. SY.	642	71.2	1/2	4	v				5745.	40	6	SEE P
4	4 "	392	2829.0		4	MEM.	4	bas.	287	142.4	1	4			GY.sy	359	7184	50	$\cdot 6$	
5	5 BAS.	497	75655.0	40	- 4	IIII XVIII	5	5 AlAb.	8	142.4	,	4			LIM.	33	47.9	13	7	
6	b BK-QTZOSE	426	141.5	1	$\cdot 5$		5A	ALAB.	797	3560.6	25	4			3 BAS.	262	47.9	1/3	7	
7	7 BAS.	328	707.4	5	. 5		6	BKATZOSE	E 25	7120.	50	- 4		9	BAS	338	287.5	2	7	
8	8 GY. SY.	11	1414.61	10	$\cdot 5$			ALAB	23	47.5	1/3	5		3430	B	21	574.7	4	7	
9	9 BK.BAS.	316	28300. 20		5	-17		B		142.5	I	5	MERNPTH		SY	54	5749.	25	7	kahun
3310	O GY.GRAN.	. 38	$28300 \cdot 200$	200	-5	-40		9	245	1425:2	10	. 5		2	2	5	438	1	8	
	1 BAS.	313	70.811	1/2	${ }^{6}$		3370	Flint	54	$3563-2$	25	5	11	3	3 BAS	428	$143 \cdot 8$		8	
2	2 HAEM.	494	283.2	2	16	xv		HAEM.	524	7126	50	5	XVIII		4	497	719.2	5	δ	XVII.
3	3 GY	442	1415.910	10°	. 6	-4		BAS.	33	71.3	1/2	6			5 GY.METAM.	486	1438.1	10	8	xvill
	4 BAS.	331	1416011	10	$\cdot 6$			BAS	232	71.3	$1 / 2$	6		6	6 BAS	356	1438.4	10	-	
	5 BAS.	435	$5 / 416.110$	10	. 6	GHUROB		4 BAS	402	285	2	6			7 Alab	426	2875:3	20	8	
	6 LIM	16	1416.31	10	6			5 GY.sY.	422	2	2	6		8		65	2877.2	20	8	KAhun
	7 BAS. DRULL	LCAP	P 7078.5	50	$\cdot 6$			BAS.	311	85	2	6			BK-QT20SE	558	3596.0	25	8	$x \times 111$
	8 BAS.	368	87080.5	50	$\cdot 6$			7	50		5	6		3440	0 B	822	$28770 \cdot$	200	-8	V
	9 GY-BAS.	333	$335400 \cdot 2$	2	d	2		8 bas.	328	713.1	5	6			GY. QTZOSE	265	$143 \cdot 9$	1	9	
3320	O BR-QTZITE	E 261	156650	400	. 6	-80		9 BX.GY. LIM	23	$1425 \cdot 7$	10	. 6			2 BAS.	324	287.8	2	9	
	BA	264	$4{ }^{283.5}$	2	-7		3380	O CYy	E 653	28522	20	6	RIRAEH XII		3 BAS.	406	287.8	2	9	
	2 GYatzose	E 418	$8{ }^{1417.4} 10$	10	7	7		BK. "	55	2852.4	20	. 6	$\times \times 111$		4 BK.WT.SERP	448	$287 \cdot 8$	2	9	
	3 BK.SY.	237	$77083 \cdot 5$	50	-7			GY. "	351			-6	-20		5	913	1439.1	10	9	KAHUN XVIII
	4 PINK GRAN	N 238	28350. 2	200	$0 \cdot 7$	$7-150$		S.	268	142:7		7			6	497	$1439 \cdot 4$	10	9	XVIII
	5 GY. MARB.	. 426	656	4	4			bas.	339	$285 \cdot 4$	2	7			7 BK.WT.SY.	33	48.0	1/3	1440	
5A	A HAEM.	3985	5708.9	5	5	PIERCED		5 HAEM.	887	7134	5	7	7 XVIII	8	8 GY-QtzOSE	20	72.0	$1 / 2$	-	
	6 BAS.	369	709.1	5	- 8			6 BAS.	207	$71426 \cdot 8$	10	7			9 HAEM.	486	144:0	1	. 0	XVIII
	7 BAS.	11	70	5	5 8			7 BR.QTZOSE	821	1 2855.4	20	7	7	3450	LIM.	498	1440	1	. 0	- -1
	8 bas	442	270	5	5			83K. ."	558	35	25	\| 71	XXI		BAS.	344	144	1	- 0	

No.	MATE RIAL	FOAM	GRS. \times	\times U	UNIT ${ }^{\text {d }}$	DETAIL	No.	MATERIAL	Form	GRS. \times	UNIT	DETAIL	No.	MATERIAL	FORM	GRS. x	UNIT	DETAIL
3452 B	BAS.	373	288.1	214	144.0		3518	LIM.	57	$58000 \cdot 400$ 1	145-0	nn, Karun Xll	3582	ALAB	335	73.1 1/2	6.2	
	LIM	63	576. 4	4	0	$1111-1.8$		GY.RTZOSE	264	145.11	. 1			BA	262	146.2	$\cdot 2$	
H	HAEM	397	719.95	5	- 0	GMUROB	3520	bas.	3	45.1	$\cdot 1$			BAS.	344	292.42	2	DEFENMEH
B	BAS.	2	719.95	5	-0			ALAB	338	290.32	$\cdot 1$			BAS.	426	292.5	2	
B	DAS.	369	720.15	5	- 0			BK. Qt	545	2902720	1		6	ITE	352	585. 4	2	-4.5
7	GY.SY.	33	720.25	5	- 0		3	BAS.	338	$48 \cdot 41 / 3$	-2			bas.	422	730-9 5	2	
G	GY. POR PH	245	7196	50	- 0			GY.SY	33	$48.41 / 3$	-2			BAS.	258	731.25	2	Mem.Glass
a	QTZITE.	207	14402.		- 0			B	328	$290 \cdot 42$	2			GY.SY.	426	31.15	2	
3460 B	BAS.	32	1441	1	1			B	202	2	- 2		3590	LIM	97	$29250 \cdot 200$	- 2	-70
	BAS.	366	288.3	2	1		7	B	369	$2905 \cdot 320$	- 2			S.	54	14631	-3	
G	GY.QTZOSE	55	$2882 \cdot 32$	20	-1	MERNPTH	8	B	348	72600.	-2			STEA.	657	29272	3	QUFT XII
Q	QTZITE. 3	382	7206-2 5	50	- 1		9	BRECCIA	801	1452.610	$\cdot 3$	MERN PTH	3	SY	393	292.72	- 3	
42	LIM.	9	14415. 10	100	$\cdot 1$		9A	HARD LIM.	598	1453.510	. 3	ZET, ABYD,329		BAS.	11	438.93	3	\wedge
5	BAS	336	72.1 /	$1 / 2$	-2	--3	3530	BAS	33	1453.510	3		5	BAS.	337	1463.310	-3	
6 B	BK.STEA. 22	22	1442	1	-2					3632.7 25	$\cdot 3$	SEE K	6	RITE	425	2925:4 20	$\cdot 3$	
	BAS. 33	338	2	2	- 2			Gr.sy	82.3	$7266 \cdot 50$	$\cdot 3$		7	BAS.	393	$73.21 / 2$	4	
8	BAS.	314	576.7	4	-2				386	4	-4			GL2D QTZ.	384	$73.21 / 2$	4	
9	BAS.	83	721.2	5	$\cdot 2$	MERNPTH	3	BA	337	5	. 4		9	BAS.	126	732.25	4	QUFT
3470	RE	345	5768. 4	40	- 2		4	GY. SY	262	1453.610	-4		3600	BAS	338	2928.220	4	
1 B	BAS.	254	48.11	1/3	$\cdot 3$		5		33	7	$\cdot 4$			BK.QTZ.	55	2928.420	4	
2	B	26	$144 \cdot 3$	1	$\cdot 3$		6	BK. SY	333	1453810	4		2	GY.SY.	642	7319.750	4	XII
3	HAEM.	498	14428	10	$\cdot 3$	XVIII	7	" "	386	291.12	-5		3	BK.LM.	267	732.55	5	- 5
4	BAS.	265	1	$1 / 2$	4		8	Alab	206	291.4	. 5	-1.6	4	BAS.	65	2930.120	. 5	
5	B	202	V	$1 / 2$	4		9	L	215	291.1 2	. 5	MEM.	5	GY. SY.	92	23.	5	
6	GY.SY.	33	1	$1 / 2$	4		3540	GY, MARB.	314	582.14	$\cdot 5$		6	GY. BAS.	328	29300. 200	5	
7	BK-QTZOSE	32	$72.21 / 2$	1/2	. 4			A	9154	872.86		tarkhan 1		SY.	16	$73.31 / 2$	6	
8	S	271	144.4	1	4		2	GY.GRAN	264	$29100 \cdot 200$. 5	-8	8	8	254	93.22	. 6	
9	BAS.	265	288.9	2	4			GY.sy	33	$72.81 / 2$	$\cdot 6$			9	353	$733 \cdot 0$	6	
3480	BAS	44	288.9	2	4		4	BAS.	203	145.61	. 6		3610	BK-QTZOSE	8	3665.625	. 6	XXIII
1	Y.SERP.	32	721.8	5	4		51	H	45	727.85	. 6	XVIII				5863. 40	. 6	SEE P
2	BA	446	2.1	5	4		6	B	6	35	-6			QTZITE	64	14656	$\cdot 6$	
3	QTZITE	37	2888.4	2	4		7	BAS.	24	1165.08	6	IIII V		RED GRAN	56	3300. 500	$\cdot 6$	
4	BAS.	65	5775.4	40	4	nn quft V	8	DIORITE	727	$2911.8 \quad 20$	-6			AEM.	94	. 7	7	SYRIA XVIII
5	GY.SY	261	$72200 \cdot 50$	500	$\cdot 4$	20				1.025	. 6	SEE K		4	25	46.7	7	
6	BK-QTZOSE	335	289.1	2	${ }^{5}$		9		63	550	$\cdot 6$			5	4.	32	7	Thebes
7	LIM.	452	22.7	5	. 5		3550	B	16	- 500	$\cdot 6$	50		GY.SY	32.1	3.5	7	
8	RED GRAN	256	$72250 \cdot 5$	500	. 5			GY.SY	331	57.1	7			7	3	733.6	7	
9	9 BK.SERP.	487	$72.31 /$	$1 / 2$	6		2	L	15	583. 4	7	Kanum ${ }^{\text {x }} 11$	8	BAS	29	733.75	7	
3490	BAS.	33	289.3	2	$\cdot 6$			BK-QTZOSE	351	29150-200	7	-5				3668.525	7	SEEK
1	GY.QTZOSE	387	$1446 \cdot 210$	10	6		4	BR-QTZITE	314	72860500	7			HAEM	5	$73.41 / 2$	$\cdot 8$	XVII
2	BAS.	37	$1446 \cdot 4$	10	$\cdot 6$		5	B	328	291.62	$\cdot 8$		3620	HAEM.	368	$73.41 / 2$	8	
3	B	314	$2892 \cdot 2$	20	6	-6		B	206	72	. 8			BK.JASP.	12	293.7 2	8	
4	4 GY. SY.	317	$28930 \cdot 2$	20	6	-3	7	BAS.	2	85	8			2 BK.SY.	331	1468.110	8	
5	5 bas.	262		2	7		8	BAS	3	1457.810	8			3	422	935.7 20	$\cdot 8$	
6	6 B	393	289	2	$\cdot 7$		9			10	8					670.225	8	SEEK
7	7 BAS.	33	$1446 \cdot 9$	10	7		3560	H	3	1.8	9	XVIII		EM	49	$140 \cdot 9$	9	XVIII
8	B BK-QTZOSE	82	7237. 50	50	7			B	4	1.82	9			5 BR.SERP.	338	146.9	9	QUFT
	9 Alab.	9156	4.8	1	8	TARKHAN 1	2	BAS.		291.92	9			6 BAS.	313	293.92	9	
3500	O BK. QTZ.	496	1448	1	. 8	SORED, XVIII		B	429	1458.810	9			7	369	1468.610	-9	
	1 GY.SY.	33	$723 \cdot 9$	5	. 8		4	BAS.		. $01 / 2$	$146 \cdot 0$			8	674	1469.010	$\cdot 9$	
,	2 HA	498	$1447 \cdot 710$	10	8	\$1x. \quad xVIII	5	BAS.	323	$1 / 2$	$\cdot 0$			ARSY	16	293900	9	
3	3 BAS.	245	2896.42	20	$\cdot 8$			AMAZONITE	341	$73.01 / 2$. 0	THEBES	3630	JADE	28	$49.01 / 3$	147.0	DEFENNEH
			3621.4	25	18	SEEK		L	497	73.0	- 0	karnak Xvili		BAS.	262	$73.51 / 2$	- 0	
	4 QTZITE.	315	14484	100	$\cdot 8$			GY. STEA.	285	$146 \cdot 0$	- 0			M	803	$73.51 / 2$	0	XVI
5	5 AlAB.	314	$48.31 / 3$	1/3	$\cdot 9$			BAS.	393	146.0	- 0			3 BAS.	275	294.12	0	
6	6 SERP.	23	144'9	,	9		3570		6	146.0	-0		4	4 BAS	373	294.12	- 0	
	7 BAS.	315	289.8	2	$\cdot 9$			GY.SY.	287	$146 \cdot 0$	- 0			5 BAS	203	1470410	0	
	8 GY. QTZOSE	265	289.8	2	. 9			BRECCIA	801	292.02	- 0	karnax, xvili		6 GY.QTZOSE	E372	2939.820	0	
	9 BAS.	324	289.9	2	$\cdot 9$		3	B	312	292.0	- 0			7 BAS.	329	7357.	. 0	
3510	O BK. QTZ	879	7248	5	. 9	XXIII		ALA B	885	72975		THEBES, XVIII		8 QTZITE	358	7352. 50	\bigcirc	
	BK-QTLOSE	702	14490	10	9	V	5	L	366	729.85	. 0		9	9 BAS	333	7349. 50	. 0	
	2 QTZITE	82	$14489 \cdot 100$	100	9			GY.VOLC.	. 33	730.25	- 0		3640	0 ALAB. rude	657	58800400	. 0	-10
	3 GY.QTZOSE	352	72450	500		-20			265	146910	- 0	$3 \mathrm{~K}^{-1 \cdot 2}$		18	315	73520500	\bigcirc	-40
	4 GN. LIM.	265	72.51	$1 / 2$	145.0			RED SY	65	$146,000-10^{200}$. 0	? K		2	12	147.11	1	
	5 RED HAEM.	81		2	- 0	XVill		B	71	1	1				262	294.2	-1	
	6 BAS.	397	290.1	2	. 0	MEM.GLASS	3580	BAS.	446	$7305 \% 50$. 1		4	4	336	294.2	$\cdot 1$	
	$7 \mathrm{BAS}$.		28					\|RED SY.	32	146	. 1					294	-1	

No	MATE RIAL	FORM	GRS.	\times	UNIT	DETAIL	No.	MATERIAL	FORM	GRS.	\times	UNIT	DETAIL	No.	MATERIAL	FORM	GRS.	\times	UNIT	DETAIL
3646	BAS.	33	2942.72	20	$147 \cdot 1$		3704	BAS.	338	741.7	5	148.3		3765	BAS.	33	49.9	$1 / 3$	497	
	BK-RTZOS三 3	333	2943.0	20	. 1			GY.SY	363	1483.0	10	$\cdot 3$			BAS	33	299.4	2	7	
8	GY.SY.	331	73.6	1/2	2		6	BAS	446	296.8	2	. 4		7	GY. SY	373	748.5	5	7	
8 A	GOLD	RIN6	147.2	1	-2.		7	BAS	331	296.9	2	.4		8	LIM.	428	1496.8	10	7	
	BAS.	261	147.2	1	2		8	Alab.	64	593.6	4	. 4	$\times 11$	9	GY. 5 Y.	60	5990.	40	7	XXII
3650	BAS.	275	735.9	5	2	MEM.	9	QTZITE	356	5939.2	40	. 4		3770	aY. QTZOSE	315	7486.3	50	7	
1	$B A S$.	498	1471.6	10	2	XVIII	3710	GY.SY.	262	49.5	1/3	. 5			QTZITE	328	7487.	50	7	rough.
2	BR-QTZITE	55	2944 :3	10	2			BAS	264	49.5	$1 / 3$. 5		2	LAB	384	749	1/2	8	
			5890.	40	2	SEE P	2	BIF QTZOSE 611	611	297.0	2	. 5	X 11	3	N.SERP.	203	149.8	1	8	
	LIM.	262	7360.	50	-2		3	GY.SY.	263	742.8	5	. 5	-. 6	4	BR.MARB	32	149.8	1	-	
4	BAS.	33	1473.4	10	3		4	GY. SY.	33	297.2	2.	. 6		5	BAS	429	1498.2	10	8	
5	BR.SY.	429	$2945 \cdot 2$	20	$\cdot 3$		5	BR.LIM.	373	2971.8	20	$\cdot 6$					374:5	$21 / 2$	8	SEEK
6	$A L A B$.	256	73.7	$1 / 2$	$\cdot 4$					5946.0	40	$\cdot 6$	SEEP	6	LAB	386	$149 \cdot 9$	1	9	
7	GY.SY.	331	147.4	1	4		6	GY.SY	315	148.7	1	$\cdot 7$		7	BAS.	448	149.9	1	9	
8	HAEMA	493	294.9	2	4	tartus, XVIII	7	bas.	328	$74 \cdot 4$	$1 / 2$	8		8	BAS.	446	299.8	2	9	
	GY. SY.	275	294.9	2	4		8	BAS	165	74.4	$1 / 2$	- 8		9	BAS.	429	1499.5	10	9	
3660	GY.SY.	369	1474.4	10	$\cdot 4$		9	BAS	285	148.8	1	8	MEM.				5994.	40	9	SEE P
1	BAS	265	2948.3	20	4		3720	HAEM	387	297.7	2	-8		3780		342	5997.	40	9	
			5898.	40	-4	SEEP		B	3255	1487.6	10	. 8			ALAB	436	50.0	$1 / 3$	150-0	
2	BK-QTIOSE	9	7368.	50	4		2	PORPH.	MACE	2975.5	20	$\cdot 8$		2	$A S$.	356	$300 \cdot 0$	2	- 0	
3	BK. BAS.	256	29475	200	4	-2				3719.4	25	- 8	SEEK	3	GY. SERP.	11	$600 \cdot 1$	4	- 0	
4	BAS.	428	147.5	1	. 5		3	HAEM.	93	2978	2	. 9	XVIII	4	AS.	428	750.1	5	. 0	
5	BAS.	344	295.0	2	5		4	BAS	11	1489.0	10	9		5	As.	372	1500.2	10	- 0	
6	GY.SY.	57	737.3	5	. 5	QUFT XII	5	QTZITE	33	14890.	100	. 9		5A	GN.GLZ.	696	7500.	50	0	- $5 \rightarrow 1-230$
7	BAS.	387	1474.6	10	5		6	BAS.	262	74.5	$1 / 2$	149.0		6	GY.SY.	692	15000	100	. 0	-40
8	BK-QTZOSE	375	14753.	100	. 5		6A	SY.	9238	49.	1	- 0	-1.9	7	S	426	-1	1	1	
,	bas.	264	49.2	$1 / 3$	6		7	BK.SY	21	745.1	5	. 0		8	BAS	12	50.1	1	$\cdot 1$	DEFENNEH
3670	BAS.	328	147.6	1	. 6		8	BAS.		1489.8	10	. 0		9	GY.SY.	33	3002	2	1	
1	GY. SY.	325	1476.0	10	6		9	ALAB	256	149000	1000	- 0	-1400	3790	GY. RTZOSE	2.65	75.1	$1 / 2$	2	DEFENNEH
2	BAS.	27	1476.2	10	6		3730	BAS.	350	49.1	1	1		1	BK.	235	75.1	$1 / 2$	2	
2 A	LIM.	645	22143	15	. 6	Z ET, ABYD, 309		GY. SY.	262	149.1	1	- 1		1 A	A	31	150.2	1	-2	MEM.
3	$A L A B$.	653	2952.4	20	$\cdot 6$	IIII Kahun	2	BAS	369	$745 \cdot 3$	5	1		2	BAS.	33	150.2	1	2	
4	$A L A B$.	33	295.4	2	7		3	BK.SY.	338	$1491 \cdot 1$	10	$\cdot 1$		3	ALAB	627	$150 \cdot 3$	1	$\cdot 3$	XVIIf
5	GY. BAS.	422	295.4	2	$\cdot 7$		4	B	19	7453.	50	1		4	BAS.	424	150.3	1	-3	DEFENNEH
6	BK.JASP.	698	591.0	4	7	V	5	CHALCEDONY	Duck	74.6	$1 / 2$	$\cdot 2$	JERUSALEM	5	GY.SY	CE	1503.5	10	3	EROE
7	HAEM.	885	738.6	5	7	marathus	6	B	482	298.5	2	- 2	MEM.	6	As	33	1503.5	10	-3	dxyl
8	BAS.	350	1477.1	10	7		7	G	312	596.7	4	2		7	D SY.	245	3006.2	20	3	
9	BAS.	368	2954.9	20	7		8	BAS	258	1491.7	10	$\cdot 2$		8	ALAB.	265	75.2	$1 / 2$	4	
			3691.4	25	7	SEEK				5967.	40	2	SEE P	9	AS	263	300.8	2	4	
3680	RED SY.	261	59100	400	7		9	G	18	29850.	200	2	-80	3800	-	33	300.8	2	4	
1	BAS.	338	739.2	5	. 8		3740	BK. BAS	346	29840.	200	. 2		1	AS.	338	751.8	5	4	
			3694.5	25	- 8	SEEK		FLIN	9	2986.8	20	$\cdot 3$		2	AS.	372	752.0	5	4	MERNPTH
2	HAEM.	499	95.8	2	9	Xvili	2	S.	392	98.8	2	$\cdot 4$		3	EKASP	57	$1503 \cdot 7$	10	4	$\times \times 111$
3	BAS.	265	295.9	2	9			GY.SY.	32	298.9	2	$\cdot 4$		4	GY.SY.	311	15044	10	4	
4	BAS.	448	295.9	2	-9		4	BR.ALAB.	692	97.7	4	$\cdot 4$	Gebeleyn, XII	5	Y.SY	215	$15040 \cdot$	100	4	
5	BK. 5 Y.	285	295.9	2	9		5	LIM.	344	747?	5	4		6	BAS.	238	150400	1000	4	-10
6	DIORITE	82	1479.6	10	9	GIZEH V	6	LIM.	642	1494.7	10	4	1111111 -V	7	GY.SY	262	$150 \cdot 5$	1	5	
7	BK-QTZOSE	63	5918.	40	9	$\times \times 111$	7	BAS.	254	2988.5	20	$\cdot 4$		8	BAS.	213	150.5	1	5	
7A	"	611	7396.	50	9	$Z E T, A B Y D, 461$				5979.	40	4	SEE P	9	$A L A B$	262	. 5	1	5	
8	BAS.	331	74.0	1/2	148.0			BAS.	19	7470.	50	$\cdot 4$	-90	3810	BAS.	344	301.0	2	5	
9	$B A S$.	314	296.0	2	- 0			RED SY.	32	59750.	400	4		1	AS	427	752.5	5	5	
3690	BAS.	11	$740 \cdot 0$	5	. 0		3750	B	33	49.5	1	. 5		2	LAB	155	$3010 \cdot 7$	20	5	
1	BAS.	261	740.1	5	- 0			bas	46	149.5	1	5		3	AS	351	6019.	40	5	$\times \times 111$
2	ALAB.	4	$40 \cdot 2$	5	-		2	BAS.	32	598.1	4	- 5			Y.RED LIM.	498	301.2	2	6	QUFT XVIII
3	BAS.	285	$1480 \cdot 3$	10	- 0		3	BAS.	337	747.3	5	. 5		5	QTZITE	356	1506.4	10	6	
4	BAS.	802	2959.9	20	. 0			GY. QTZOSE	422	29900	200	5		6	SANDSTN	337	7529.	50	6	
4A	WT.LIM.	692	2960.	20	- 0	AMENEMHAT	5	BAS.	442	748	1/2	6		6 A	GOLD S	HELL	$150 \cdot 7$	1	7	A. $\bar{A} A$
5	GY.QTZOSE	11	148.1	1	1		6	BAS.	384	74.8	1/2	6		7	BK.SY	197	753.7	5	7	SCARABS $\times \times 11$
6	Y.BK.SERP.	263	1481.0	10	. 1		7	BK.QTZOSE	125	149.6	1	6		8	GY- QTZOSE	11	30150 .	200	7	
			5926.5	40	$\cdot 1$	SEEP	8	HA	496	299.3	2	6	XVIII	9		335	$75 \cdot 4$	'/2	. 8	
7	GY. BAS.	314	29620.	200	1			OY. SY.	295	747.8	5	.6		3820	BAS.	314	753.9	5	- 8	
8	GY. BAS.	271	29615	200	1	-3	3760	GY. RTZOSE	55	2991.3	20	$\cdot 6$		1	BAS.	497	754.0	5	- 8	XVW
	BAS.	252	74.1	1/2	2					37400	25	$\cdot 6$	SEE K	2	BAS.	654	754.0	5	-8	v
3700	BK. PORPHY	8	148.2	1	2		1	BAS.	382	2991.7	20	$\cdot 6$		3	LIM	375	754.0	5	. 8	
1	BK.SY.	393	148.2	1	-2		2	LIM.	7	7479.	50	6		4	QTZITE	27	754-2	5	-8	
2	GY. SY.	327	296.5	2	2		3	BAS.	264	14958	100	$\cdot 6$		5	GY.SILIC.	262	$50 \cdot 3$	$1 / 3$	9	
	BAS.	1202	593.2	4	. 3			BK.EAS.	3261	129912	1200	.6		16	BK.SY.	446	754.	5		MEM

No.	MATERIAL	Furn	GRS.	\times	UnIT	DETAIL	No.	MATERIAL	FORM	GRS.	\times	UNIT	DETAIL	No.	MATERIAL	Forme	GRS.	\times	UNIT	DETAIL	
4410	GY.SY.	618	201.0	1	2010	V1	4458	GY.SY.	12	5121.	25	2043	$\times \times 111$	4508	gAS.	142	26.1	1/8	2086		
	LIM.	643	1005.	5	- 0	IIIII -20 VI		BK.SY.	347	8198	40				LIM.	232	261	$1 / 8$	8		
2	BAS.	17	2009.5	10	- 0					820.2	4	2050	SEEN	4510	Y.BKSERP.	33	52.2	1/4	- 8		
3	BK.QTZOSE	347	$4020 \cdot 2$	20	. 0	XXIII	4460	O BK.STEAT	5	16400	8	- 0	H.8 Remar		BK. JASP.	63	417.9	2	9	11 VI	
	RED GRAN	11	20100	100	-0	-60		1 BK.ETZOSE	65	6153.	30	1	XXIII		GY. QTZOS:	PE8 2	20900	10	2090		
	BAS.	62	8049	4	2	11 VI	2	BAS.	38	25.7	$1 / 8$. 6		3	LIM.	4292	$20900 \cdot 11$	100	-	-100	
6	BR.SERP.	692	2011.8	${ }^{8} 8$	251.5		3	BAS.	314	25	$1 / 8$. 6		4	GN. STEAT.	725	20911	1	1	BORED	
			805.6	4		SEE N	4	BAS.	38	51.4	$1 / 4$	$\cdot 6$		5	n<t.	625	5229	25	1	XII	
	ALAB.	63	3828	19	. 5	${ }^{0} 10$	5	GY.SILIC.	15	102.8	1/2	. 6			GY.STEAT.	63	2098	1	2	XII	
8	BK.W.POAPH 35	356	4030	20	5	-36	6	6 RED JASP.	653	1850.	9	6		7	Y. QuARTZ	742	418.7	2	3		
9	BAs.	33	25.4	1/8	6		7	breccia	11	2055.6	10	.6	pretaben	8	LIM.	917	837.8	4	4	KAHUN XII	
4420	ALAB.	64	201.7	1	$\cdot 7$	DEFNEH VI	8	SK-RTZOSE	8	$2056 \cdot 5$	10	$\cdot 6$	XXIII				8380.	40	. 5	SEE N	
1	BAS.	16	8077.7	40.	9	XXIII	9		611	2057.4	10	7	XXIII	9	ALAB.	265	41900	200	5	-50	
2	LIM.	232	$50 \cdot 5$	$1 / 4$	2.0		4470	BAS.	33	51.5	1/4	$206 \cdot 0$		4520	BAS.	33	131	$1 / 16$	$\cdot 6$		
3	GY.STEAT.	932	101.0	$1 / 2$	- 0	QUFT		ALAB	165	5156	25	- 2			BAS.	20	52:4	$1 / 4$	${ }^{6}$		
3N	LIM.	653	24244	120	- 0	MEDUM III	2	B	347	4126.5	20	. 3		2	EM.	894	52.4	$1 / 4$.6	SYRIA	
	LY.SY	62	202.1	1	1	XII	3	BL.6LASS	303	25.8	$1 / 8$	$\cdot 4$		3	BK.SASP.	748	209.6	1	6		
4A	SANDSTN	54	8086	40		2ER,A8 729, 1	4	BA	33	51.6	$1 / 4$	4		4	BK.QTZOSE	2	4192.1	20	6	XXIII	
5	BAS,	23	25.3	1/8	4		5	B	33	51.6	$1 / 4$	4		5	" 1	446	4192.1	20	6	XXIII	
6	BK SY.	325	50.6	$1 / 4$	-4		6	B	33	103.2	$1 / 2$	4		6	" \quad "	54	41934	20	6	XxIII	
7	alab.	25	10	5	4	-4	7	A	16	20640	10	$\cdot 4$					839.0	4	7	SEE L	
8	BAS.	339	2025	10	$\cdot 5$	MERNPTH	8	VOLC.ASH	264	$2064 \cdot$	10	4	-12	7	21 M.	316	41936	20	7		
8 A	LIM.	9202	1013.4	5		END. GROOVE	9	BKRTZOSE	2	10319.	50	4	XXIII				8387.	40	7	SEE N	
9	BAS.	347	40540	20	$\cdot 7$		4480	GN	9	10326.	50	. 5	KAhUN XII	8	T205:	11	41965	20	8	XXIII	
			8108.0	40	7	SEE N				8268.	40	$\cdot 7$	SEEN	9	Y.LIM.	646	839.5	4	- 9	11×11	
			12160	60	7	SEE P		BAS.	33	51.7	$1 / 4$. 8		4530	BR.QTZITE	11	41990	200	- 9	-4	
4430	VIOLET GLS.	38	50.7	$1 / 4$	8		2	BK.STEAT.	871	51.7	1/4	. 8		O1	L	653	42004	200	2100	MEDUM III	
	BAS.	425	50	$1 / 4$	8		3	BK-QTZOSE	54	4137.5	20	-9	MERNPTH	,	G N.eTzose	11	$5256 \cdot$	25	1	MERN PTH	
	BK.QTZ	55	1014.2	5	8	xxı				8279.	40	2070	SEE N	2	6	7	10506	50	1	XXIII	
,	\cdots n n	10	4056.1	20	. 8	$x+11$	3A	A	6532	$24861 \cdot 12$	120	1	MEDUM III	3	BK. BAS.	33	42022.	0	1		
4		63	6088.2	30	-9	xxil1	46	GY.GRAN	26	41416 2	200	1			BK.W.SY	311	263	8	4		
4A	GL2.SCHIST	691	406	2	2030	- 28.30 x111	5	GY.JASP.	33	25.	$1 / 8$	- 2		5	Q	64	6313 .	30	$\cdot 4$	7 VI	
5	BA	14	5073.	25	1	111	6	ALAB.	4	829.1	4	3	HIERAKON?		DIORITE	652	1052.6	5	5	1111	
6	BK. 3 Y.	54	40640	20	2	$x 111$	7	BK. QTZOSE	2	5186.	25	$\cdot 4$			LIM.	934	842.5	4	6		
7	BK.QT20SE	63	$4066 \cdot 9$	20	$\cdot 3$	xX 111	8	LIM.	36	$830 \cdot 0$	4	. 5		8	AlA B.	626	210	1	-9	XVIII	
8	-	9	5085.	25	. 4	$\times \times 111$	9	BAS	203	51.9	1/4	.6			BK-QTZOSE	10	10543	50	$\cdot 9$	XXIII	
			81	40	4	5	4490	0	803	$207 \cdot 9$	1	.6	CU.PIN	4540	B	1 $\begin{aligned} & 15 \\ & 231\end{aligned}$		50			
9		742	1017.8	5	$\cdot 5$				165	20758	100	. 6	IIIIn			231	$\begin{aligned} & 2106 \\ & 5277 \end{aligned}$	25	211.1	SEEL	
4440	BK. QTZOSE	54	4070.6	20	5	MERNPTH	2	GN.RTZOSA	11	4157.1	20	. 8	$\times \times 111$		G	395	26.4	1/8	2	DEFENNEH	
	RED GRAN	422	10175.	50	5	rough	3	BAS.	254	5197.	25	. 9		2	Alad, KAN	648	3801-	18	2	IIIIIIII, -2, XII	
2	BAS.	19	5	$1 / 8$	2040		4	BONE	74	$52 \cdot 0$	$1 / 4$	8.0				88	4.22.4:2	20	-2	NAR. PRE	
3	GN.JASP.	20	25	1/8		thebes				2080.0	10	- 0	SEE Q 138.6		PINK QTZ	742	1270.4	6		QUFT	
4	BAS.	33	51.0	$1 / 4$	- 0		5	BK-QTzOSE	10	4160.1	20	- 0	MERNPTH				5293	25	7	SEE L	
5	BAS.	33	51.0	1/4	. 0		6	L	56	$8320 \cdot$	40	. 0	KARUN,-15, xul	51	G	26	265	$1 / 8$	2120		
6	BAS.	26	51.0	1/4	. 0		7	LIM	692	312001	150	. 0	SINAI, -500				$4241 \cdot$	20	\bullet	E	
7	BK.QTIOSE	881	5101.	25	$\cdot 0$	xXIII				$832 \cdot 4$	4	$\cdot 1$	SEEN		LIM.	625	$8500 \cdot$	40	5	KAh, $-200, \mathrm{XH}$	
8	GY.SY.	265	102.1	1/2	- 2			W.aTZITE		2081.4	10	$\cdot 1$	XXIII		BR.SERP.	691	$1276 \cdot 2$	6	$\cdot 7$	III QUFT XII	
9	WT.GLASS	38	51.1	$1 / 4$	4		9	GY.MARB.	126	208.3	1	$\cdot 3$			RED ${ }^{\text {n LIM }}$	649	$6405 \cdot$	30	213.5	nan „ IV	
4450	BAS.	20	57.1	$1 / 4$	4		4500	BK.QTZOSE	55	$2083 \cdot 5$	10	$\cdot 3$	$\times \times 111$	9	PINK SY.	165	10686	50	7		
	A	626	408.8	2	. 4	$x 11$			38	$4165 \cdot 2$	20	$\cdot 3$	xx III	550	LIM.	296	1879°	5	2140	A	
2	BK-QTZOSE	12	4090.8	20	. 5	xXIII	2	RED.QTZ.	54	4166.8	20	$\cdot 3$	$\times \times 111$		CHLORITE	618	54.47			Mnish \times il	
3	BAS.	352	5112	25	5		3	3 HAEM.	485	52.1	1/4	$\cdot 4$	$x \vee \\|$	2	Y.STEAT.	64	322.7	3/2 2	2153	111 XII	
			818	40	5	SEE N	4	4 RED Glss	15	104.2	$1 / 2$	$\cdot 4$		3	L	458	$2180 \cdot 2$	10	2180		
4	ALAB.	65	102.3	$1 / 2$	6		5	GY.aT20SE	38	4168.6	20		XX111	3A	LIM.	653	43848	2002	219.2	MEDUM III	
5	RED VEINED	649	$10433 \cdot$	57	4	inñquftiv	6	GY.STEAT.	63	417.0	2	-5.	$11 \quad$ XII	4	WT. QTZ.	742	$885 \cdot 3$	4	2213		
	$\begin{aligned} & \text { BKatimose } \\ & \text { LIM. } \end{aligned}$	822 64	1024.2 5120	[5	.8 8				64910	[$\begin{gathered}8340 \\ 10433\end{gathered}$	4 50	. 5	SEE N nni quFt IV		LIM.	456	118.0	$1 / 2$	230		
						K	A	D		E			A	M	RKED ${ }^{\text {d }}$						
2,39A	P. BR.LIM-	799	241.2	2	20.4	P	25404			3920					HAEM.		69.5		$139 \cdot 0$		
242A	P. Gr.LIM.	797	1208.2	10		P	2618A	ALAB.	49	1319.5	10	131.9	D. chicker	3337B	HAEM.	446	$142 \cdot 0$	1	$142 \cdot 0$	a	
2183 A	P. PINKLIM	702	2454	2	$122 \cdot 7$	P	2705 A	A HAEM. 808	Dove	1330.	10	133.0	$\text { S. }-20 \text { Human }$	3403A	BAS.	331	143.1	1	143.1 a	a	
2237A	P. BR.LIM.	792	124.4	1	124.4	P	2786 A	AGY.LIM.	435	402.5	3	$134 \cdot 2$	s. \&R	3630A	BAS. Lhin	22	$49 \cdot 0$	$1 / 3$	14700	Q	
22614	D. PURR."	797	1250.3	10	125.0	4*	3073N	ABR,LIM.	436	1387.3	10	138.7		3991 A	IVORY, lown	926	78.	$1 / 2$	156	$N-2$	
2407a	D.VAR-ELS	711	128		128.4	D	3151	ABK.JASP.	817	694.3	5	138	PEBBLEQ								

No.	Form	NOW ${ }^{\text {c }}$	CH.	ORICIN4	¢	UNIT	TDETAIL			50	Q	F	F			No. ${ }^{\text {F }}$	FonM	NOW	CH.	OR16m	x	UNIT	DETAIL
4915	333	258.51	14	2.67	2	133.5			NZE							5017	262	293.3	$7 \cdot$	286	2	$143 \cdot$	
	336	2700	2.8	267	2			No. F	FOM	NOW	CM-0n	ORIGMET	X	UNIT	DETAIL	8	33	145.5	$2 \cdot 4$	143	1.		
	60	70.53	3.5	67	$1 / 2$	134*	slate	4978	324	141.5	48	137.	1	137.		9	344	713.6	4	716	5	2	
8	60	67.3 .	7	67	$1 / 2$		ALEX.	d 33	337	$690 \cdot 31$	10	686	5	- 2		d	364	283.5	53.5	287	2	. 5	
9	00	$133 \cdot 6$	- 9	134	1				26	69.6	b 7	69.11	$1 / 2$	138		50203	312	287.0	6.	287	2		
4920	Smaxt	134.61	1	134	1		¢IX	d 3	344	141.1	3.	138.					338	287.7		287	2.		1
	256	13492	$2 \cdot 9$	134	1			4980	335	68\&2	210	690	5			1	4	$287 \cdot 8$	$5 \cdot$	287	2		
2	58	133.0	2.5	134	1			1	33	66.6	$4 \cdot 3$	69	1/2		0 mark	d	335	721.2	$3 \cdot$	718	5	. 6	
3	333	132.93	3.5	134	1			23	3266	6968	97. 6	6943 .	50	\cdot	LEAD FILLING	2	23	$72 \cdot 2$. 2	72	1/2	144	
4	301	136.5	$2 \cdot 5$	134	1			d 3	32	148.5	$9 \cdot$	139.	1	139.		3	336	$72 \cdot 9$	$1 \cdot$	72	$1 / 2$		
	HELAP	134.6 ${ }^{-3}$	-3	1343	1		$\phi 1 \times$	34	494	1400	01.	139.	1			43	338	138.5	8	144	1		
6	Mex	270.82	$2 \cdot 3$	268.5	2		¢IX	42	235	136.0	2.8	139.	1			d	"	1450		144	1		
7	53	271.0	2.8	268	2		RIGREH	52	262	2727	7.5	278	2		P'treasury	d	\because	146.7	46	144	1		
8	58	540.212	12	536	4		SMYRNA	6	FROG	277.2	$2 \cdot 3$	278	2			d	33	150.6		144	1		
9	26	6748	46	670	5		B	73	338	699.5	$3 \cdot$	696	5	2	2	d	338	287.4		288			
4930	265	668.0	2	670	5		MEM.	d 2	265	692.4	8	696	5	2		d	338	$723 \cdot 0$	$1 \cdot$	722		4	
	74	268.50	\bigcirc	2685	2	$134 \cdot 2$	$2 \Delta=4$	82	262	47.1	7	465	$51 / 3$.5			344	$283 \cdot 2$	$6 \cdot$	289	2	. 5	
2	52	4150	12.	403	3	$\cdot 3$	111	92	26	281.5	12	279				d	38	2880		289	2		
3	314	263.411	115	2692	2	$\cdot 5$		49903	338	$280 \cdot 8$	22	279	2			d	338	300.0		289	2		
4	58	277.18	8.	269	2	. 5	5 Alex	1	LON 2	27866	3027	279002	200		LM.	d	265	$293 \cdot 8$	$9 \cdot$	289			
	327	271.6	1.9	269	2			23	339	1404	$2 \cdot 6$	140	1	1400		d	262	74211	18	724	5	$\cdot 8$	
6	60	$543 \cdot 76$	6.	538	4			33	334	140.52	52.6	140	1			6	57	1445	5.5	145	1	145	LEAD,ALEX
7	338	$669 \cdot 75$	5.	673.5	5	$\cdot 7$	7	d 3	338	150.7	7	140	1			d.	338	$150 \cdot 7$	56	145	1		
8	Wolf	1345.82	2	1348	10		g HAEMT.中IX	d 3	338	7	75	280	2				63	$144 \cdot 3$	19	45	1		
	M UAL	135416	6	1348	10	8	AMARNA B	d 3	33	299.7	720	280	2			d 3	312	290.2	4°	290	2		
4940	321	44.51	1.2	45	$1 / 3$	135.			265	672.8	30	700	5			d	24	715.6	$9 \cdot$	725	5		
	326	45.113	1.3	45	1/3			d 3	324	92.4	12	700	5				366	293.5	1007	2907	2	$\cdot 3$	MEM.SET DF4
	623	$135 \cdot 3 \cdot$	- 7	135	1			53	334	7028	3.	700	5		DEFENEH	d	24	730.6	3.	727	5	4	
3	927	270.4	45	270	2			d. 3		7080	18.	702	5	$140 \cdot 4$		d.	333	292.5		291	2	. 5	
	3255	679.3	95	675	5		GHUROS	63	333	$281 \cdot 7$	5.	281	2	. 5		9	337	293.7	3.	291	2		MERENPTH
	265	667.82	27.	675	5				331	468	$1 \cdot 2$	47	$1 / 3$	14%		5030	MEAL	302.7	111	291	2		GHUROB
6	605	677.11	1.	677	5	135.4	ASKLEP10S. B	86	623	47.1	. 5	47	$1 / 3$		LEAD	d	338	725.4	45	728	5	$\cdot 6$	
d	9156	270.42	$2 \cdot 4$	271	2	. 5		94	428	$140 \cdot 5$	2:1	141	1				265	731.6	$3 \cdot$	729	5	8	
	64	17.0	0	17.0	$1 / 8$	136		d 3	324	143.5	536	141	1			d.	35	73.1	$3 \cdot$	73	$1 / 2$	1460	
8	575	24.3 1.6	1.6	22.7	\%		Alex.	d 2	23	146.1	52	141	1			d	338	145.6	2	146	1		
9	60	34.0	-1	34	$1 / 4$			d 3	338	138.0	15.	141	1			2	353	147.1	$3 \cdot$	146	1		
4950	60	35.1 .7	- 7	34	$1 / 4$			d 33	331	149.6	$8 \cdot 71$	141			MEM.	3	3	292.5	14	292	2		
	63	68.51	1.2	68	$1 / 2$			50002	23	280.2	$2 \cdot 2$	282	2			.d. 3	364	298.8	7.	292	2		
2	622	68.3	4	68	$1 / 2$				366	282.0	6. 2	282	2				306	14746	14	1460	10		中 IX
3	622	1356	$3 \cdot 0$	136	1			28	884	711.4	5.7	706	5	141.2	LEAD	5	338	72.5	55	730	5		
4	262	1348 t	15	136	1		ALEX.	32	262	713.9	15.7	707	5	4	LEAD FILLING	6	337	729.6	$4 \cdot$	730	5		
5	58	137.0	- 7	136	1			46	643	284.5	$1 \cdot 2$	283	2	$\cdot 5$			324	$710 \cdot 8$	20.	730	5		
6	58	$274 \cdot 3{ }^{2}$	$2 \cdot$	272	2			d. 3	356	7045	9. 7	708	5	. 6			337	14758	12	1464		4	
	58	540.83	$3 \cdot 1$	544	4		SMYRNA	53	33	$73 \cdot 0$	3.	71	$1 / 2$	142	x		364	2886	4.	293	2	. 5	
8	60	2041.017	17.2	2040	15			d 3	338	73.73	3.	71	$1 / 2$			9	33	292.6	2	293	2		
9	623	27714	$4 \cdot 5$	$272 \cdot 5$	2			63	3371	$142 \cdot 5$	$2 \cdot 514$	142	1			d.	366	277.3	12.	293	2		
4960	621	$33.31 \cdot$	1.1	34.2	$1 / 4$	$136 \cdot 8$		73	3371	1425	$2 \cdot 61$	142	1			5040	339	3043	23	293	2		
	57	136.512	$2 \cdot 5$	137	1	137	Qus	d 33	338	143.5	$1 \cdot 21$	142				d.	88	735.5		733	5	6	
2	623	548.810	10	539	8	137.2	III H ALEX.	B 3	364	283.6	4. 2	284	2			1	8	734.2	5	733	5		
3	623	23.5 -5	- 5	23.	$1 / 6$	138.		93	324	$287 \cdot 6$	3. 2	284	2			2	333	734.4	5.	733	5		
4	254	45.6 J	1.2	46.	$1 / 3$			d 3	366	288.0	10. 2	284				d	33	147.4	4.6	147	1	1470	
5	58	67.4	33	69	$1 / 2$		ALEX.	5010		692.4	$17 \cdot 7$	710				3	36	295.6	2.	294			qus
6	SEED	69.5	$\cdot 1$	69	$1 / 2$		SICILY B		324	699.7	$10 \cdot 7$	710					04	693.5	46	735	5		N'ABYD.DEN
	60	140.0	$2 \cdot 3$	138	1			d 33	3381	$1430 \cdot 1$	9114	1421		1			32.4	$742 \cdot 0$		735	5		
8	58	138.3 -3	- 3	138	1		ALEX.	2	327	718.0	7. 7	711		-2			338	1471.2	26	1470	10		
	622	71.1	-5	71	1/2	42	$A=1$	d 33	337	$720 \cdot 3$	8. 7	712		$\cdot 4$			45	$150 \cdot 5$		1474	1		MEM SET of 4
4970	58	144.73	3.	142	1			d 3	324	729°	17.7	712		4		d. 3	333	293.5	14	295	2	.5	
	14	11.9	$\stackrel{ }{ }$	11.9	1/121	142.8	8 SMYRNA	d 3	334	283.0	$9 \cdot 2$	285		. 5			354	$590 \cdot 4$	40	590	4		
2	58	72.4	7	72	$1 / 2$	144°	Alex.	d 336	366	288.0	5.2	285		5		8	494	739.2	11	738	5	6	SYRIA
3	60	289.0	45	289	21	144.5		333	333	710.2	6. 7	714		/8		9	337	$1495 \cdot 2$	24	1476	10		MEM.SETOF4
d.	625	74.73	32	71.5	$1 / 2$	143	Alex	d 3	33	72.7	$1 \cdot 2$	71.5		143.0		5050	Bove	74.3	. 6	74	y/2	$148 \cdot 0$	¢ 1 ${ }^{\text {d }}$
4	62	24.0	9	241	1/6	1446		d 3	338	145.6	$2 \cdot 21$	143	1				623	74.7	3.7	74	\%2		LEAD
5	60	145.03	$3 \cdot 7$	145	1	145		4		144.53	3.7 1	143	1		LEAD		623	$146 \cdot 8$	3.5	148	1		LEAD
6	58	145.72		147	1	$147 \cdot$		5	741	142.9	-1 1	143	1		BK.STEA.	d	335	$149 \cdot 3$	$3 \cdot$	148	1		
7	60	12.2.	-3	12.31	$1 / 12$	147.6			366	285.43	$13 \cdot 2$	286				d	335	$150 \cdot 5$		148	1		

QED	con	ntd	No	\times	UNIT	No.	x	UNIT	No.	\times	UNIT	NE	CE	F	Na .		UNI		Q	A
No.	\times	UNIT	577	10	145.3		20	147.2	141	20	149.1	No		UN	835	0	160.5	425		188.5
991	1	$143 \cdot 3$	578	2		118	2		607	20		*412	1	152.3	47^{8}	1/2		426	1/2	1189.4
995	1	4	1027	1	3	*38	10		1100	5		*376	5		${ }_{3}{ }^{3} 2$	20	$\cdot 7$	433	3	191.2
71	5	. 5	97	20		105	1		${ }_{4}{ }^{3} 3$	1/2		1129	10		480			435	4	194.2
572	200	${ }^{-5}$	98	5	-4	1059	2	- 5	*308	1	1	1130	20	7	1283	5	16.8	441	25	195.4
563	2	${ }^{5}$	99	5	-4	1060	5	5	*273	1		*410		153.1	836	20	161.0	442	4	
72	20	6	100	5	4	1061	5	5.5	142	5		*450	2		837	2		443	25	
996	1		* 054	20	4	120	2	. 6	*275		2	620	20	2	482			459	10	
73	1		*323	20	4	121	1	. 6	*359	10	-2	*360	5	2	483	50	8	825	20	
997	2		101	5		592	5	$5 \cdot 6$	143	50	4	*417	1/2	4	1285	20	162	444	4	8
$*_{4} 57$	1/2	8	579	5	$\cdot 5$	1064			1102	1/2	$\cdot 4$	* 436	1/2		277	10	$\cdot 3$	445	20	. 8
877	20	$\cdot 9$	1030	20	5	1065	2	6	*347	10	$\cdot 4$	* 363	2		1286	50		448		
74	2	9	*446	1		1066 593	50		*493	1000	$\cdot 4$	1134	2	6	1287	5	4	778	1/2	2
75			102	20	$\cdot 6$	593	5		*348	10					838	\%		449	4	
76	5	44°	580	20	. 6	1067	2	7	608	10		*325	10	8	895	1/2		450		197.4
77 565 56	20	\bigcirc	581 1031 1032	20	. 6	1068	500		1103 1104	2		452 $* 394$	40	154.0	839 840	20	.9 163.0	830 451		198.0 199.4
566	500	. 0	1032	2	. 6	*364	2	. 7	*352	5	5	1138	1/2	4	420	$1 / 2$		306		
1003	10	- 0	1033	50	6	122	50	. 8	1105	20	. 7	884	,		1288	20		48	20	$201 \cdot 2$
79	19	-	103	20	$\cdot 7$	123	10	8	*312	10	7	1139	1/2		285	10	4	484	20	$202 \cdot 6$
567	10	1	582	10	7	124	5	. 8	*382	5	7	622	$1 / 2$		842			848		2
80	50		583	2	7	125	2		*340	10		885			843	20 5		$\begin{array}{r} 320 \\ 485 \end{array}$		
1006	10	. 2 .3	584 1034	5	7	125 1070 1080	10 5	-8 8 8	145	20		*396	30	O	*414	1/2	6	490	50	8
1007	100	${ }^{-3}$	104	20		418	1	. 8	146	2	. 8	454	1/2		653	10		841		204.0
*650	2	3	105			596	10	,	147	1		455			1291	2	164.2	844	20	
${ }^{*} 423$	1	$\cdot 3$	1038	$1 / 2$		127	$1 / 2$	148.0	1106		8	*285	5	4	1290	20		492	25	.
568 568	10	4	1039	1	. 8	597	10		*324	20	8	*303	10		845			${ }^{872}$	20	7.2
569 570	$1 / 2$	4	585 100	2	.9 140.0	1071 1073 107	1/2		1107 149			*328	20			$\begin{aligned} & 2 \\ & 2 \end{aligned}$		*652		4
878	5	4	1040	50	. 0	1074	1	-	1109	$1 / 2$	-	* 310	2		*398	50	16	783		209.5
1008	1		434	1/2	-	128	10	. 1	*339	10	-	* 277	5		*369	2		363		. 5
82	20		669	1	- 0	599	2	. 1	*331	20	. 0	1142	10		*602	$1 / 2$			LA	
83	1	5	*387	10	0	1076		-	610	2		4	40		31	10	166	786	1/2	211.2
1011	50		* 371	5		*366	2		1113	5	- 3	1279		156.0	1292	5		787		2 2
*4	1/2	.5	1041	10		*287			50	$1 / 2$	4	*474	1/5		329			*336	8	7
*659	2	5	*422	1		*321	200	- 1	1114	$1 / 2$					*390	20		491	10	7
$* 338$ $* 3$ $*$ -317	10		*405	10	$\cdot 1$	129	5	2	1115 611	1/2		458			\% 847			368		
$\begin{array}{r} * 317 \\ * 354 \end{array}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$		*35	$\|10\|$		130	40		*411	20		1145 +431	1/2		KHO	IRIN	NE	${ }_{*} 7884$	1/4	4
879	1/2	.6	586	1	2	601	1/2		* 337	10	5	460	40	6	849	20	171.2	789	25	
1016	$1 / 2$. 6	1042	1/2	- 2	1079		-2	152	500	. 6	461	20		*498	1/2	172.8	*601	$1 / 3$	7
1017	100	$\cdot 6$	1043	1	2	1081	10	$\cdot 3$	153	2		462	20		850	20	$173-2$	371	4	
$* 413$ $* 370$	1	- 6	109	5	${ }^{3}$	*383	4	$\cdot 3$	612	5		*372		$\cdot 9$	857	10		1252	40	1
* 370		- 6	1	5		131 132	5	$\stackrel{4}{4}$	1117			826		157.4 .4	1278 868		$174 \cdot 0$ 175.1	493	10	
			1044	5	3 4 4	132	10		* 435	1/2		827 $* 291$	200		${ }^{868}$		175.1 177.5	386	50	
* 362	2	. 8	11	10		603	2	4	614	2		464	20		799	10		887		
*345	10	8	112	5	5	1083	20	. 5	154	20	8	1280	2	. 5	${ }^{1} 70$	20	178.0	375	2	6
86	10		*379	5	. 5	133	1/2	6	155	$1 / 2$		465	2	8	867	1/2		1254	20	218.2
87	2	-	*367	2	6	*378	5	. 6	615	1/2	-8	893	1	8	* 408			794		219.4
88	2	$\cdot 9$	588	20	$\cdot 6$	134 135		- 8	881 $* 660$	20	9	467	20	158.2	*655	10	179.6	1156 361	20	
573	2	. 9	1045		${ }^{6} 6$	135 604	1/2		*660	2		829			869	10	179.6	361 380		220.8 221.3
574	1	9	1046	2	.6	604	$2{ }^{2}$.8 .8	1119	20			2	2	871	20		380		
+ 1019	2	9	*377	5	. 6	605	20													. 6
*341	10		*380	20	.6 .7	606	10	-8 .8 8	*395	24		832	10			1/4		797	20	- 9
9	50	1450	589	2	7	1091	10	-8	616			833			*309		183.6	1159		
	20		*658	2	. 8	$\log 2$	00	-8	1122	1	4	1281	1/2	8	* 415		$5 \cdot 8$	*399	40	- 8
1021	1	. 0	*373	5	-	*335	Ho	. 8	*389	10		471	1/2	159.0				1260		
	1		114	5	9	1093	10		* 495				50	$\cdot 2$				422		2
$\begin{array}{r}575 \\ 1023 \\ \hline 1\end{array}$	2		1047	2	$\cdot 9$	*663	2	枵	618	${ }^{2}$		472 $\times 503$	10	5				801		${ }_{5}^{3}$
*416	$1 / 2$	1	1048	5.	-	880	10	149.0	1127			894	1	7					200	. 5
*272	1/2	. 1	*604	20		1095	$1 / 2$	-	${ }_{4}$			475	10	160.0				804		225.0
*44	1		1052	$1 / 2$	1470	1096	12	-0				834		-				*316	5	
*	2		1056	5	. 0	1097	1	\bigcirc				55	1/2	2				1261	40	
							20 20					$* 632$ 477						387		${ }^{3}$

DARIC, BABYLONIAN, KYZIKENE,ANTIOCHAN

 MARBLE BLOCKS, 2 BREASTSONTOP
THE MINA IS 50 DARICS.

59-12.26-45/	M	563.4	50	6	5	122.	6100	K	Br.
59.12.26.456	\cdots	12290.	50	12340	2M	$123 \cdot 4$	6170	K	Br, h
74.2.5.105	\cdots	25800	5200	31000	5 M	124.0	6200	E	Br.
59.12.29.461	-	18544	80	18620	3 M	124.1	6207	K	HEADS
87	"	37364	24	37340	6 M	124.5	6223		B
59.12.26.459	.	6042		250	M	1250	6250	K	Br. h.
59-12? 56?	\ldots	26508		31500	5 M	12	6300	K	Br.
$59 \cdot 12 \cdot 26 \cdot 448$	"	32036	600	32000		1280	6400	K	Br.
82.12.4 1	"	5246	420	5288		$132 \cdot 2$	66		Br

$R E G 1 S T E R$	M
$68 \cdot 1 \cdot 10.98$	P
$67 \cdot 5 \cdot 8 \cdot 257$	P
$67 \cdot 5 \cdot 8 \cdot 252$	P
$67 \cdot 5.8 \cdot 268$	P
$67 \cdot 5 \cdot 8 \cdot 254$	P
$67 \cdot 5 \cdot 8 \cdot 266$	P
$67 \cdot 5 \cdot 8 \cdot 256$	P
$67 \cdot 5.8 \cdot 274$	B
$67 \cdot 5 \cdot 8 \cdot 263$	P
$67 \cdot 5 \cdot 8 \cdot 246$	P
$T \cdot B .380$	P
$68 \cdot 1 \cdot 10 \cdot 91$	P
$66 \cdot 5 \cdot 4 \cdot 17$	P
$T . B .398$	P
$67.5 .8 \cdot 260$	P

67
68
65
67
67
75
6
58
$67 \cdot 5-2.245$

$68 \cdot 1 \cdot 1084$ | $65 \cdot 7 \cdot 20 \cdot 117$ | P |
| :---: | :---: | :---: | :---: | $67 \cdot 5 \cdot 8 \cdot 240$

$67 \cdot 5 \cdot 8 \cdot 239$ $75 \cdot 4 \cdot 20 \cdot 8$ P $61 \cdot 1 \cdot 10 \cdot 88 \mathrm{P}$ $56 \cdot 8 \cdot 26 \cdot 262$

$7 \cdot 8 \cdot 379$ 56.6.26.674 P $67 \cdot 5 \cdot 8 \cdot 236 \mathrm{P}$	$54 \cdot 5 \cdot 19 \cdot 154$	P
$67 \cdot 5 \cdot 8 \cdot 279$	B	
---:	---:	---:
$68 \cdot 1 \cdot 10 \cdot 95$	P	68

$$
\begin{gathered}
68.1 \cdot 10 \cdot 112 \\
\text { T.B.394 } \\
\text { T.B. } 373
\end{gathered}
$$

$$
66 \cdot 5 \cdot 4 \cdot 14 \mid P
$$

T. B. 397 P 67
67
68 68

$$
\begin{gathered}
T \\
66.5
\end{gathered}
$$

$$
\begin{aligned}
& 66 \\
& 67 \\
& 69
\end{aligned}
$$

$$
\begin{aligned}
& 69 . \\
& 67 . \\
& 85 .
\end{aligned}
$$

$\therefore \quad$ ARRP ARPINUA
AEItra $S=6$ orSEMIS $\because:$
$67 \cdot 5 \cdot 8 \cdot 307$
T.B.

$68 \cdot 1 \cdot 10 \cdot 155$ 5.169 $82 \cdot 12 \cdot 4 \cdot 8 \quad$| B | 1546.0 |
| :---: | :---: |
| | 662 | 68.1-10-107 P 67.5.8.324 S 6491 $67 \cdot 5 \cdot 8.343 / L \quad 68.6$ 63.7.28.304 B 6600.5 81.7.9.7 \mathbf{P} 6630.3 80 $60 \cdot 10 \cdot 2 \cdot 77 \mathrm{~S} \quad 275 \cdot 2$ - $275.2 \mathrm{U} / 2$ 137.6 6605

The dirisions may be noted between

the PEYEM and DARIC at 125.8 and 127.4 and
the DARIC and STATER at 130.8 and 132.4

STATER, ATTIC.

REG1STER			CH.	$\begin{array}{l\|l\|} \hline 5 \text { ORIGIN } \\ 5 & 405 \end{array}$		UNIT/M	MINA		DETAIL	KHOIRINE, CHIAN, PERSIAN.																				
$\text { T.B. } 375$	P	$\begin{array}{r} 410.5 \\ 1347.5 \end{array}$	$\begin{gathered} 5 \cdot 5 \\ 9 . \end{gathered}$	$\left.5 \begin{gathered} 405 \\ 1350 \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} 3 \\ 10 \end{array}\right\| 1:$	$\begin{array}{\|l\|l\|} \hline 1350 \\ 135.0 \\ \hline 6 \end{array}$	$\left\|\begin{array}{l} 6750 \\ 6750 \end{array}\right\|$		$\begin{aligned} & 111111=6 D R . \\ & B \\ & 1 / 2 \text { CRESCT } \end{aligned}$	REEISTERIM		GRS.	CH. ORIGIN \times			JuNIT	T MINAP	PL.\|DETA	L											
T. B. 391	p	842.1			M/8 13	135.267	6760			68.1.10.80	$\begin{array}{\|l\|l\|} \hline S & \\ \hline P & 2 \\ \hline \end{array}$	29.2	-	29.2 is 1			8410													
T.B. 372	1	1696			25/2 13	135.267	6760	A	CRESCENT			2127.229.3		2105.3	3416	168.4	8420 C													
67.5.8.222	3	3399.6	0	3389.2	2511	135.66	6778	A	RTO	67.5.8.336	5			29.3	15	168.6	84													
67.5.8.223	16	16865	22.1	850. m / l	$25 / 2$	135.66	6780		OM O $^{1 / 2}$ \%.	64.10.7.1997	M	8476		2476	M	169.5	8476	Km												
T.B.390	P	852.2	$2 \cdot 2$		M/8 113	136.0 ¢80	6800	A	OMHA OWL	$68 \cdot 1 \cdot 10 \cdot 106$	P	4243.2	50.4	4240	60	169.6	8480													
T.B. 3938	P	540.0	10.	. 545	413	136.26	6812	\wedge			5	89.2	-	89.2	35	171.3	8563													
67.5.8-231		1675.9	19.4		25/2	136.46	6820		1/2AMPHORA	$68 \cdot 1 \cdot 10 \cdot 134$	B	175.7	3.5	172.2	$2 \mathrm{2k}$	172.2	8610													
52.9.1.18		4576.8		4558. oy Arp	$2 \mathrm{M} / 31$	136.768	6837					3588		3588	$u / 2$ $v / 4$	172.2	86													
Neiko		MA			PPAN	N	N	$\wedge \in$	俉		$9{ }^{6}$	179.5		179.5	U/4	172	8616		c. $\frac{M}{48}$ CONFUSON											
67.5.8.227		1714.6	12.11.		$25 / 2$	137.068	6848		$1 / 2$ TORTOISE		B.	86.9	$1 \cdot 4$	86.3	K	$172 \cdot 6$	8630													
		687.4			513	137.06	6850			P		2167.2	24	2159.	30	172.7	8636	c	= quarter											
T.B.361		7044.	5006	$\begin{array}{r} 685 . \\ 0860 . \end{array}$	50	137.26	6860	A	MN		5	360		360	u/2	172.8	8642		$S=$ SEMIS											
$68 \cdot 1 \cdot 10 \cdot 85$	P 22	$2219 \cdot 3$	23.2		16	137.268	68	c		67.5.8.347		181		81	U/4	. 8	8692		$\Sigma=$ sicilicus											
$69 \cdot 1 \cdot 10 \cdot 3$	4	4590.5	$\begin{aligned} & 40 . \\ & 43587 \\ & 11147 \end{aligned}$		$2 \mathrm{M} / 3$	137.66			TPITH AMPHOM			344.7		350	4 K	175.0	8750													
67.5.8.234	P 11	1139.6			M/3	137					5	875		8756.		175														
$53.6 \cdot 16 \cdot 1$ 0.018		41507.	13.1	$\begin{aligned} & 1147 \\ & 51300 \cdot 6 \\ & 41300 \end{aligned}$	6 M	137.7	6883	Pa		319	S	2208				8														
$\begin{aligned} & \theta E 01 \\ & k \wedge \Omega \end{aligned}$						A	E			TWO SYSTEMS ARE MIXED HERE. THE MINA $\div 100=K H O I R I N E, K$. $\div 12$ UNCIAE, U; AND 288 SCRIPULAE,S.																				
65.7 .20 .111		4599.8	50.	4590.2	$2 \mathrm{M} / 3$	137.76	6885	A	am																					
T. 8.365		3458.6	35.	3445.	2513	137.86	6890	A	Bu																					
W.T. 1109		4596.5	\|l			$2 \mathrm{~m} / 313$	137.9 b	6893		AMPHORA																				
$68.1 \cdot 10.87$		1386.8		1380	10	138.0	6900	c^{C}	DOLPHIN	$B E Q A, A E G I N E T A N$.																				
68.1 .10 .89		557.6	$\begin{aligned} & 352 . \\ & 552 \\ & 0 . \\ & 3450 . \end{aligned}$		4	13		omas tortoise																						
T.B. 364		3478.3			25		69					$46 \cdot 4$	1.1	$45 \cdot 31 / 4$	/4	1.2	,		$=3080$											
$65 \cdot 7 \cdot 20 \cdot 112$ $T \cdot B .389$	3	3453.8		$\begin{gathered} 3460 \\ 869 \end{gathered}$	2513	138.46	6920	A	ми		B	99.0	11.	92.	$1 / 2$	184.	9200													
T. B. 389	P	865.5			M/8	13	6952	A				369.7	$1 \cdot 4$	370		85.														
76.5.10.4	1	1697.6	50.	$1740 \cdot 2$	25/2	139.26	6960	SY		$\begin{aligned} & 68 \cdot 1 \cdot 10 \cdot 103 \\ & 67 \cdot 5 \cdot 8 \cdot 232 \end{aligned}$		9218.	170	9300.	50	186.														
67-5.8.219	6	6958.	75.			139	990		Do			1159.7	7.	11	m/s	86.2	312		1/4											
					25	$140 \cdot 0$	O00		WITH BRON2E	T.8.378,1809 P		1168.0	5.	1168	m/8	1869	3344	A	CRESCENT											
5.4			5.	2005.	5011	14			Mn	T.8. 377		1169.6	5.	1170.	m/8 3	187.2	9360	A	$\triangle H M O C R E S C$											
$66.5 \cdot 4 \cdot 12$	P	897'9 2	22.	$\begin{aligned} & 876 \\ & 281 . \end{aligned}$	M/8 1	14		c		67.5.8.253		282.0 373.9	6.	27	$3 / 2$	187.5	9367		II'AECN, MHATT.											
67.5 .8 .253		282.0			21	140.57	70		III 3AEC, +m+4AT.	-68.1.10.122		373.9	3.	375.	2	187.5	9375	A												
т. B. 371		1765.8	15.	$\begin{gathered} 281 . \\ 1759 . \end{gathered}$	$25 / 2$	140.77	7036	A	HMITETAP, $/ 1$ TONT	T.B. 392	P	752.3	2.	750	4	187.5	9375	A												
68.1.10.93	P	422.0	$2 \cdot 7$	$422 .$		141.070		c	DIOTA	R.P.K.	B	1166.6	7.4	1174.		187.8	9392		Sorriongadin											
T. B. 388		881.3	$\begin{aligned} & 882 . \\ & 708 . \end{aligned}$		M/8 1	141.1		-	3 $\triangle 0 \triangle 70,1$		8	47.3	-	47.1	$1 / 4$	188.4	942													
83.10	P	707.1			51	141.67		c_{0}	A Ω LIoN, Fi	66.5.4. 19		47718	3.	475.	5/2	$190 \cdot 0$	9500	c												
66.5.4.4	P ${ }^{\text {P }}$	3556.9 880.0	12.3	3545. 887. $7167 \cdot$	25	141.87	7090	A	Plugged.	$68 \cdot 7 \cdot 20 \cdot 118$ $67.5 .8 \cdot 249$		955.5	5.	954.		190.8	9540	A	1/2 CRESEENT											
T. B. 387		880.0			M/8	141.97	7096		AOMO Connucop	P 67.5.8.249	B	$2389 \cdot 9$	7.	2388.		1910	55		A OWL											
T. B.	7	7161.	26.		50	$143 \cdot 3$	7167	A	MNA dolphio	70.11 .5		2402.4	25.	2390		191.2	958		1/2											
$67 \cdot 5 \cdot 8 \cdot 225$	P 1	1000.4	$\begin{gathered} 4 \cdot 4 \\ 5 . \end{gathered}$		25/81	1143.7	4		HMITE 1/2TORT.	$68.1 \cdot 10.94$ $67.5 .8 \cdot 241$	P	482.7 957	9.	479.	$\left\lvert\, \begin{gathered} 5 / 2 \\ 5 \end{gathered}\right.$	191.6	958													
T. B. 386 $68.1 \cdot 10.97$	P	143.6		$898 .$	${ }^{1 / 8}$		7184	\wedge	1/4AMPMORA	67.5.8.246		95713 480.9	19.	479.7	5/2	191.9	9594													
$65 \cdot 7 \cdot 20 \cdot 115$		1807.5		$\begin{aligned} & 143.9 \\ & 1808 . \end{aligned}$	$25 / 21$	144.6	232	A	HMIT 1/ztort.		P	577.1	5.	578.	3	$192 \cdot 7$	663													
68.1.10.101		7234.	5 15. 28.		50	145.0	72	c		66.5.4. 2		$4823 \cdot 3$	7.	4823	25	192-9	9646	C	Mn rams head											
T. B. 385	p	908	7.		M/8	145	72	A	$1 / 2$ CRESCENT	65.7.20.116	P	1204.6	8.	1207.	M/8	193.1	9656		ORTOISE											
T. B. 384	P	914.1	33.	$\begin{aligned} & 910 . \\ & 911 . \end{aligned}$		$145 \cdot 8$	728	A		67. 5.8.262	P	82.7	$5 \cdot 7$	80.6	5	1934	9667		IIII $=5080 \mathrm{~L}$											
67.5.8.228	1	1835.4	10.	1836.2		$1{ }^{146.9} 77$	73447368		HMIT $1 / 2$ TORT. 1/2CRESCT, STAR	$67 \cdot 5 \cdot 8 \cdot 220$66.5 .4 .1865.18		2404.9583.9	30	2420582.5	5/2	$\|193 \cdot 6\|$	9680													
T.8.383	P	921.4		921.				A					1.4				9708		fullface											
т.B. 3	P	925.0	2.5	922.5	M/814	147.6			OM3A OWL	65.7.20.113		2434.1	5	2429.2436.	25/2194	94:39716		-	3/4 AMPHORA $1 / 2$ CRESCT,STAR											
67.5.8.226		1868.6	$\left\|\begin{array}{l} 30 \\ 1.8 \end{array}\right\|$	$\begin{array}{r} 1848 . \\ 448 . \end{array}$	$\left.\begin{gathered} 25 \\ 3 \end{gathered} \right\rvert\,$	447.87	$\begin{aligned} & 7392 \\ & 7467 \end{aligned}$	\wedge	H+	$\left\lvert\, \begin{gathered} 67 \cdot 5 \cdot 8 \cdot 224 \\ 67 \cdot 5 \cdot 8 \cdot 243 \\ 68 \cdot 1 \cdot 10 \cdot 90 \\ 7 \cdot B \cdot 399 \end{gathered}\right.$		2458.5	22			194-9	- 979744													
T.8. 395	B	449.8				149.3						973.0	6.	975.		,		c												
											P	489.1	1.4	487.7	572	1951	9754													
											B	2942	1.2	293.0		$195 \cdot 3$	976	A												
N										$T .8 .376$68.1 .10 .82		1229.6	$\begin{aligned} & 00^{\circ} \\ & 10^{\circ} \end{aligned}$	9793 1227		$\left\lvert\, \begin{gathered} 195 \cdot 9 \\ 196 \cdot 3 \end{gathered}\right.$	9793 9816		$1 / 4$											
$\begin{aligned} & 67 \cdot 5 \cdot 8 \cdot 25 \\ & 68 \cdot 1 \cdot 10 \cdot 100 \\ & 68 \cdot 1 \cdot 10 \cdot 104 \end{aligned}$						$\begin{array}{\|c} 156 \cdot 0 \\ 156 \cdot 2 \\ 158.3 \\ 158 \cdot 4 \\ 159.4 \\ 162.9 \\ 163.0 \\ 163.8 \\ 164.0 \\ 166.2 \end{array}$	7800781079557918797081458150818881978310					594.	4.	590		196	9833		diota											
		$\begin{array}{r} 228.5 \\ 7853 . \\ 7901 . \\ 3949.2 \\ 3978.6 \\ 162.7 \\ 165.7 \\ 2036.7 \\ 2048.5 \\ 166.2 \end{array}$. 5																		
						3s8					$9970 \cdot$	62.	9942		198	9942														
						67.5.8.229				P	1248.1	14	1244	M/8	199	9														
66.5.4.6						B. 570				P	301.8	4.	299.	$3 / 2$	199.3	990		EUROPAON BULL												
						BEQA AS UNCIA OFLIGHT LITAA OF HESYCHIOS AND POLLUX.																								
-10.19.293										1/2 AMPHORA		B	95.0	1.5	95.7	$\mathrm{V} / 2$	$191 \cdot 4$	2297		=SEMIS										
									5.8 .348	S	194.4	-	194.4		194.4	2333		S												
12.4									8.3.15.2	B	2314.	50	2350	1	1958	2350														
									7. 5.8.277	B	33.0	-2	33.0	5	198.	2376		A=ISEXTVLA												
									67.5.8.248		404.2	3.6	405.6	2	2028	2434		$\theta=2$ UncIas												
										S	68.2	0	68.2	25	2046	245		- 2 SExT												
									67.5.8.327	5	206.	\bigcirc	206.9	U		92483		- Iuna.												
									67.5 .8		59	50	64	3 U	213.3	2560		$\therefore 3$ UNC												

PUBLICATIONS OF THE EGYPTIAN RESEARCH ACCOUNT AND BRITISH SCHOOL OF ARCHAEOLOGY IN EGYPT

I. BALLAS, 1895 ; by J. E. Quibell. (Out of print; obtainable in joint volume NAQADA AND BALLAS, by W. M. F. Petrie. 68 plates. zos. net.)
II. THE RAMESSEUM, 1896; by J. E. Quibeil. (Out of print.)
III. EL KAB, 1897 ; by J. E. Quibell.
IV. HIERAKONPOLIS I, 1898; text by W. M. F. P. 43 「'tes. 20s. net.
V. HIERAKONPOLIS II, 1899; by F. W. Green and J. E. Qubbel. 39 plates (4 coloured and 20 photographic).
VI. EL ARABAH, 1900; by J. Garstang. 40 plates. i6s. nel. (Out of print.)
VII. MAHASNA, 190I; by J. Garstang and Kurt Sethe. 43 plates. (Out of print.)
VIII. TEMPLE OF THE KINGS, 1902; by A. St. Grorge Caulpeild. 24 plates. i6s. net. (Out of print.)
IX. THE OSIREION, 1903; by Margaret A. Murray. 37 plates. 25s. net.
X. SAQQARA MASTABAS I, 1904; by M. A. Murray; and GUROB, by L. Loat. 64 plates. 3os. net.
XI. SAQQARA MASTABAS II, 1905; by Hilda Petrie. (In preparation.)
XII. HYKSOS AND ISRAELITE CITIES, 1906; by W. M. Flindrrs Petrie and J. Garrow Duncan. 40 plates. 25s. net. In double volume with 94 plates. 45 s. net. (This latter is out ot print.)
XIII. GIZEH AND RIFEH, 1907; by W. M. Flinders Petrie. 40 plates. 25s. net. In double volume with 109 plates. 50s. net.
XIV. ATHRIBIS, 1908; by W. M. Flinders Petrie, J. H. Walker and E. B. Knobel. 43 plates. 25 . net. (Out of print.)
XV. MEMPHIS I, 1908; by W. M. F. Petrie and J. H. Walker. 54 plates. 25 . net.
XVI. QURNEH, 1909; by W. M. F. Petrie and J. H. Walker. 5^{6} plates. (Out of print.)
XVII. THE PALACE OF APRIES (MEMPHIS II), igo9; by W. M. Flindrrs Petrie and J. H. Watkrr. 35 plates. 25s. net.
XVIII. MEYDUM AND MEMPHIS (III), 1910; by W. M. F. Petrir, E. Mackay and G. Wainwright. 47 plates. 25 s. net.
XIX. HISTORICAL STUDIES, 1910. 25 plates. 25s. net. (Studies, vol. ii.)
XX. ROMAN PORTRAITS (MEMPHIS IV), 19II; by W. M. F. Petrie. 35 plates. $25 \mathrm{~s} . \mathrm{net}$.
XXI. THE LABYRINTH AND GERZEH, igir; by W. M. F. Petrie, E. Mackay and G. Wainwright. 52 plates. 25s. net.
XXII. PORTFOLIO OF HAWARA PORTRAITS. 24 coloured plates. 50 s. net.
XXIII. TARKHAN I AND MEMPHIS V, 1912; by W. M. F. Petrie. 81 plates. 25 s . net.
XXIV. HELIOPOLIS I AND KAFR AMMAR, 1912; by W. M. F. Petrir. 58 plates. 25 s . net.
XXV. RIQQEH AND MEMPHIS VI, 1913; by R. Engelbach, Hilda Petrie, M. A. Murray and W. M. F. Petrie. 62 plates. 25s. net.
XXVI. TARKHAN II, 1913 ; by W. M. F. Petrie. 72 plates. 25 s. net.
XXVII. LAHUN I, THE TREASURE, 1914; by Guy Brunton. 23 plates (8 coloured). 63 s . net.
XXVIII. HARAGEH; by R. Engerlbach and B. Gunn. 8i plates. 25s. net.
XXIX. SCARABS AND CYLINDERS, 1915; by W. M. F. Petrir. 73 plates. $32 s$. net.
XXX. TOOLS AND WEAPONS, 1916; by W. M. F. Petrir. 76 plates. 35s. net.
XXXI. PREHISTORIC EGYPT, 1917; by W. M. F. Petrie. 53 plates. 25 s. net.
XXXII. CORPUS OF PREHISTORIC POTTERY; by W. M. F. Petrie. 58 plates. 25 s. net.
XXXIII. LAHUN II, THE PYRAMID, 1920; by W. M. F. Prtrik, G. Brunton, M. A. Murray. 75 plates. 25s. ned.
XXXIV. SEDMENT I, 1921; by W. M. F. Petrie and G. Brunton. 47 plates. 25s, net.
XXXV. SEDMENT II, 192I; by W. M. F. Petrie and G. Brunton. 43 plates. 25s. net.
XXXVI. THE GOSPEL OF ST. JOHN, COPTIC MS.; by Sir Herbert Thompson. 80 plates. 25s. net.
XXXVII. TOMBS OF THE COURTIERS AND OXYRHYNKHOS; by W. M. F. Petrie, Alan Gardiner, Hilda Petrie and M. A. Murray. 55 plates. 25s. net.
XXXVIII. BUTTONS AND DESIGN SCARABS; by Flinders Petrie. 30 plates. 25s. net.

[^1]
PUBLICATIONS OF THE EGYPTIAN RESEARCH ACCOUNT AND BRITISH SCHOOL OF ARCHAEOLOGY IN EGYPT

I. BALLAS, 1895 ; by J. E. Quibell. (Out of print; obtainable in joint volume NAQADA AND BALLAS, by W. M. F. Petrie. 68 plates. zos. net.)
II. THE RAMESSEUM, $\mathbf{1 8 9 6}$; by J. E. Qurbeli. (Out of print.)
III. EL KAB, 1897 ; by J. E. Quibell.

V. HIERAKONPOLIS II, 1899; by F. W. Green and J. E. Quibell. 39 plates (4 coloured and 20 photographic).
VI. EL ARABAH, 1900; by J. Garstang. 40 plates. 16s. net. (Out of print.)
VII. MAHASNA, IgoI; by J. Garstang and Kurt Sethe. 4^{3} plates. (Out of print.)
VIII. TEMPLE OF THE KINGS, 1902; by A. St. Grorge Caulfelld. 24 plates. r6s. net. (Out of print.)
IX. THE OSIREION, 1903; by Margaret A. Murray. 37 plates. 255. net.
X. SAQQARA MASTABAS I, 1904; by M. A. Murray; and GUROB, by L. Loat. 64 plates. 3os. net.
XI. SAQQARA MASTABAS II, 1905; by Hirda Petrie. (In preparation.)
XII. HYKSOS AND ISRAELITE CITIES, 1906; by W. M. Flinders Petrie and J. Garrow Duncan. 40 plates. 25s. net. In double volume with 94 plates. 45 s. net. (This latter is out ot print.)
XIII. GIZEH AND RIFEH, 1907; by W. M. Finders Petrie. 40 plates. 25s. net. In double volume with 109 plates. 505 . net.
XIV. ATHRIBIS, 1908; by W. M. Flinders Petrie, J. H. Walker and E. B. Knobel. 43 plates. 255 . net. (Out of print.)
XV. MEMPHIS I, 1908; by W. M. F. Petrie and J. H. Walkrr. 54 plates. 25s. net.
XVI. QURNEH, 1909; by W. M. F. Petrib and J. H. Walker. 56 plates. (Out of print.)
XVII. THE PALACE OF APRIES (MEMPHIS II), 1909; by W. M. Flinders Petrie and J. H. Walkrr. 35 plates. 25 s. net.
XVIII. MEYDUM AND MEMPHIS (III), 1910; by W. M. F. Petrie, E. Mackay and G. Wainwright. 47 plates. 25s. net.
XIX. HISTORICAL STUDIES, 1910. 25 plates. 25s. net. (Studies, vol, ii.)
XX. ROMAN PORTRAITS (MEMPHIS IV), 1911; by W. M. F. Petrie. 35 plates. $25 \mathrm{~s} . \mathrm{nel}$.
XXI. THE LABYRINTH AND GERZEH, rgir; by W. M. F. Petrie, E. Mackay and G. Wainwright. 52 plates. 25 s. net.
XXII. PORTFOLIO OF HAWARA PORTRAITS. 24 coloured plates. 50 s. net.
XXIII. TARKHAN I AND MEMPHIS V, 1912; by W. M. F. Petrie. 81 plates. 255. net.
XXIV. HELIOPOLIS I AND KAFR AMMAR, 1912; by W. M. F. Petrie. 58 plates. 25 s . nel.
XXV. RIQQEH AND MEMPHIS VI, 1913; by R. Engelbach, Hilda Petrie, M. A. Murray and W. M. F. Petrie. 62 plates. 25s. net.
XXVI. TARKHAN II, 1913; by W. M. F. Petrie. 72 plates. 25 s. net.
XXVII. LAHUN I, THE TREASURE, 1914; by Guy Brunton. 23 plates (8 coloured). 63s. net.
XXVIII. HARAGEH; by R. Engelbach and B. Gunn. 81 plates. 25 s. net.
XXIX. SCARABS AND CYLINDERS, 1915; by W. M. F. Petrie. 73 plates. 32 s . net.
XXX. TOOLS AND WEAPONS, 1916; by W. M. F. Petrie. 76 plates. 35s. net.
XXXI. PREHISTORIC EGYPT, 1917; by W. M. F. Petrie. 5^{3} plates. 25s. net.
XXXII. CORPUS OF PREHISTORIC POTTERY; by W. M. F. Petrie. 58 plates. 25 s. net.
XXXIII. LAHUN II, THE PYRAMID, 1920; by W. M. F. Petrie, G. Brunton, M. A. Murray. 75 plates. 25s. nel.
XXXIV. SEDMENT I, 1921; by W. M. F. Petrie and G. Brunton. 47 plates. 25s. net.
XXXV. SEDMENT II, 1921; by W. M. F. Petrie and G. Brunton. 43 plates. 25s. net.
XXXVI. THE GOSPEL OF ST. JOHN, COPTIC MS.; by Sir Herbert Thompson. 80 plates. 25s. net. XXXVII. TOMBS OF THE COURTIERS AND OXYRHYNKHOS; by W. M. F. Petrie, Alan Gardiner, Hilda Petrie and M. A. Murray. 55 plates. 25s. net.
XXXVIII. BUTTONS AND DESIGN SCARABS; by Filinders Petrir. 30 plates. 25s. net.

[^2]
[^0]: Alabaster xviii

[^1]: Subscriptions of One Guinea for the Annual Single Volumes, or Two Guineas for the Two Annual Volumes, are received by the Hon. Secretary, at the Edwards Library, University College, Gower Street, London, W.C., where also copies of the above works can be obtained.

[^2]: Subscriptions of One Guinea for the Annual Single Volumes, or Two Guineas for the Two Annual Volumes, are received by the Hon. Secretary, at the Edwards Library, University College, Gower Street, London, W.C., where also copies of the above works can be obtained.

